Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39073006

RESUMEN

Carboxylesterases comprise a major class of α/ß-fold hydrolases responsible for the cleavage and formation of ester bonds. Found ubiquitously in nature, these enzymes are crucial for the metabolism of both endogenous and exogenous carboxyl esters in animals, plants and microorganisms. Beyond their essential physiological roles, carboxylesterases stand out as one of the important classes of biocatalysts for biotechnology. BlEst2, an enzyme previously classified as Bacillus licheniformis esterase, remains largely uncharacterized. In the present study, we elucidate the structural biology, molecular dynamics and biochemical features of BlEst2. Our findings reveal a canonical α/ß-hydrolase fold similar to the ESTHER block L of lipases, further augmented by two additional accessory C-terminal domains. Notably, the catalytic domain demonstrates two insertions, which occupy conserved locations in α/ß-hydrolase proteins and commonly form the lid domain in lipase structures. Intriguingly, our in vitro cleavage of C-terminal domains revealed the structure of the active form of BlEst2. Upon activation, BlEst2 showed a markedly elevated hydrolytic activity. This observation implies that the intramolecular C-terminal domain serves as a regulatory intramolecular inhibitor. Interestingly, despite exhibiting esterase-like activity, BlEst2 structural characteristics align more closely with lipases. This suggests that BlEst2 could potentially represent a previously unrecognized subgroup within the realm of carboxyl ester hydrolases.

2.
Enzyme Microb Technol ; 144: 109746, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33541573

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have been introduced into industrial cocktails used for biomass saccharification due to their capacity to boost enzymatic conversion of recalcitrant cellulose. The genome of the thermotolerant ascomycete Aspergillus fumigatus encodes 7 genes for LPMOs that belong to auxiliary activity family 9 (AA9). Here, we cloned, successfully expressed and performed biochemical evaluation of two CBM-less A. fumigatus LPMOs (AfAA9A and AfAA9B). A high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis demonstrated that AfAA9A and AfAA9B are able to oxide cellulose at C1 and C1/C4 positions, respectively. Synergic effects of LPMOs (separately and in combination) with cellulases were investigated. Supplementation of Celluclast 1.5 L with a low concentration of AfAA9B improved in 20 % the saccharification of sugarcane bagasse pretreated by steam explosion (SEB), while AfAA9A did not improvethe saccharification. Analysis of the hydrolyzed biomass by confocal laser scanning microscopy (CLSM) showed the LPMOs are promoting lignin oxidation in the lignocellulosic material. This study complements the available results concerning the utilization of LPMOs in the enzymatic saccharification of lignocellulosic biomass.


Asunto(s)
Saccharum , Aspergillus fumigatus , Celulosa , Lignina
3.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32813063

RESUMEN

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Asunto(s)
Arabinosa , Glicósido Hidrolasas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Sordariales , Especificidad por Sustrato
4.
Biochimie ; 165: 275-284, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31472178

RESUMEN

Glycoside hydrolase (GH) family 45 is one of the smallest and poorly studied endoglucanase family with a broad biotechnological application ranging from treatment of textiles to conversion of complex cell wall polysaccharides into simple oligo- and monosaccharides. In a present study, GH45 cellulase from Neurospora crassa OR74A (NcCel45A) was characterized both biochemically and structurally. HPLC analysis of the hydrolytic products confirmed the endo-ß(1,4) mode of action of the enzyme. Moreover, such pattern revealed that NcCel45A cannot hydrolyze efficiently oligosaccharides with a degree of polymerization smaller than six. The crystal structure of NcCel45A catalytic domain in the apo-form was determined at 1.9 Šresolution and the structure of the enzyme bound to cellobiose was solved and refined to 1.8 Šresolution. Comparative structural analyses and molecular dynamics simulations show that the enzyme dynamics is affected by substrate binding. Taken together, MD simulations and statistical coupling analysis revealed previously unknown correlation of a loop 6 with the breakdown of cellulose substrates by GH45.


Asunto(s)
Celulasa/química , Celulosa/metabolismo , Neurospora crassa/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Simulación de Dinámica Molecular , Conformación Proteica , Especificidad por Sustrato
5.
Int J Biol Macromol ; 120(Pt B): 1893-1905, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30290254

RESUMEN

Esterases are widely applied in industrial processes due to their versatility, regio- and enantioselectivity, lack of cofactors and stability in organic solvents. Bacillus licheniformis, a microorganism frequently used in industrial and biotechnological applications such as dairy, baking, beverage, pulp and paper, detergent and cosmetics production, organic synthesis and waste management, is a promising source of esterases. Here we describe the biochemical and biophysical characterization of B. licheniformis carboxylesterase BlEst1 and its SAXS-derived molecular envelope. BlEst1 has optimal hydrolytic activity against p­nitrophenyl acetate at pH 7.0 and 40 °C. Furthermore, BlEst1 is stable in different organic solvents such as methanol, isopropanol and butanol. The BlEst1 homology model reveals a typical α/ß hydrolase core with an adjacent auxiliary domain, snuggly fitting the experimental low-resolution SAXS molecular envelope. Moreover, BlEst1 maintained considerable part of its activity in the presence of up to 5 M NaCl and its thermal stability was significantly enhanced by the presence of salt, revealing its halotolerant character. The ability to work under harsh conditions makes BlEst1 an interesting candidate for industrial applications.


Asunto(s)
Bacillus licheniformis/enzimología , Carboxilesterasa/química , Carboxilesterasa/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato , Temperatura
6.
Int J Biol Macromol ; 111: 302-310, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29292147

RESUMEN

Economic sustainability of modern biochemical technologies for plant cell wall transformations in renewable fuels, green chemicals, and sustainable materials is considerably impacted by the elevated cost of enzymes. Therefore, there is a significant drive toward discovery and characterization of novel carbohydrate-active enzymes. Here, the BlCel48 cellulase from Bacillus licheniformis, a glycoside hydrolase family 48 member (GH48), was functionally and biochemically characterized. The enzyme is catalytically stable in a broad range of temperatures and pH conditions with its enzymatic activity at pH5.0 and 60°C. BlCel48 exhibits high hydrolytic activity against phosphoric acid swollen cellulose (PASC) and bacterial cellulose (BC) and significantly lower activity against carboxymethylcellulose (CMC). BlCel48 releases predominantly cellobiose, and also small amounts of cellotriose and cellotetraose as products from PASC hydrolysis. Small-angle X-ray scattering (SAXS) data analysis revealed a globular molecular shape and monomeric state of the enzyme in solution. Its molecular mass estimated based on SAXS data is ~77.2kDa. BlCel48 has an (αα)6-helix barrel-fold, characteristic of GH48 members. Comparative analyses of homologous sequences and structures reveal the existence of two distinct loops in BlCel48 that were not present in other structurally characterized GH48 enzymes which could have importance for the enzyme activity and specificity.


Asunto(s)
Bacillus licheniformis/enzimología , Carboximetilcelulosa de Sodio/química , Celulasa/química , Celulosa/análogos & derivados , Tetrosas/química , Bacillus licheniformis/química , Celulosa/química , Hidrólisis , Cinética , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Difracción de Rayos X
7.
N Biotechnol ; 40(Pt B): 268-274, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28993256

RESUMEN

Among the structural polymers present in the plant cell wall, pectin is the main component of the middle lamella. This heterogeneous polysaccharide has an α-1,4 galacturonic acid backbone, which can be broken by the enzymatic action of pectinases, such as exo-polygalacturonases, that sequentially cleave pectin from the non-reducing ends, releasing mono or di-galacturonic acid residues. Constant demand for pectinases that better suit industrial requirements has motivated identification and characterization of novel enzymes from diverse sources. Bacillus licheniformis has been used as an important source for bioprospection of several industrial biomolecules, such as surfactants and enzymes, including pectate lyases. Here we cloned, expressed, purified, and biochemically and structurally characterized an exo-polygalacturonase from B. licheniformis (BlExoPG). Its low-resolution molecular envelope was derived from experimental small-angle scattering data (SAXS). Our experimental data revealed that BlExoPG is a monomeric enzyme with optimum pH at 6.5 and optimal temperature of approximately 60°C, at which it has considerable stability over the broad pH range from 5 to 10. After incubation of the enzyme for 30min at pH ranging from 5 to 10, no significant loss of the original enzyme activity was observed. Furthermore, the enzyme maintained residual activity of greater than 80% at 50°C after 15h of incubation. BlExoPG is more active against polygalacturonic acid as compared to methylated pectin, liberating mono galacturonic acid as a unique product. Its enzymatic parameters are Vmax=4.18µM.s-1,Km=3.25mgmL-1 and kcat=2.58s-1.


Asunto(s)
Bacillus licheniformis/enzimología , Poligalacturonasa/química , Dispersión del Ángulo Pequeño , Concentración de Iones de Hidrógeno , Poligalacturonasa/aislamiento & purificación , Poligalacturonasa/metabolismo , Temperatura , Difracción de Rayos X
8.
Int J Biol Macromol ; 109: 560-568, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29274424

RESUMEN

Environmental issues are promoting the development of innovative technologies for the production of renewable energy and "green products" from plant biomass residues. These technologies rely on the conversion of the plant cell wall (PCW) polysaccharides into simple sugars, which involve synergistic activities of different PCW degrading enzymes, including xylanases; these are widely applied in food and feed sectors, paper and textile industries, among others. We cloned, expressed and biochemically characterized a novel xylanase (Xyn10) from the GH10 identified in a metatranscriptome of compost-derived microbial consortia and determined its low-resolution SAXS molecular envelope in solution. Our results reveal that Xyn10 is a monomeric flexible globular enzyme, with high stability with a broad pH range from 4 to 10 and optimal activity conditions at pH 7 and 40 °C. Only 10% of activity loss was observed after the enzyme was incubated for 30 h at 40 °C with a pH ranging from 5 to 10. Moreover, Xyn10 maintained 100% of its initial activity after incubation for 120 h at 40 °C and 51% after incubation for 24 h at 50 °C (pH = 7.0). Xyn10 shows endocatalytic activity towards xylan and arabinoxylan, liberating xylose, xylobiose, 1,2-α-d-methylglucuronic acid decorated xylotriose, and 1,3-α-l-arabinofuranose decorated xylobiose and xylotriose oligosaccharides.


Asunto(s)
Celulosa/metabolismo , Compostaje , Endo-1,4-beta Xilanasas/metabolismo , Microbiología , Saccharum/química , Tampones (Química) , Clonación Molecular , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Modelos Moleculares , Estructura Secundaria de Proteína
9.
Mol Biotechnol ; 57(6): 574-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25711741

RESUMEN

Biomass is the most abundant and short-term renewable natural resource on Earth whose recalcitrance toward enzymatic degradation represents significant challenge for a number of biotechnological applications. The not so abundant but critically necessary class of GH45 endoglucanases constitutes an essential component of tailored industrial enzyme cocktails because they randomly and internally cleave cellulose molecules. Moreover, GH45 glucanases are core constituents of major-brand detergent formulations as well as enzymatic aid components in the cotton processing industry, clipping unwanted cellulosic fibers from cotton (cellulosic)-based tissues. Here we report on a recombinant high-yield Neurospora crassa OR74A NcCel45A production system, a single-band GH45 endoglucanase purification, and a complete enzyme functional characterization. NcCel45A is a bimodular endoglucanase showing maximum activity at pH 6.0 and 60 °C, while most active against lichenan and ß-glucans and lesser active toward filter paper, carboxymethylcellulose, and phosphoric acid-swollen cellulose. Gluco-oligosaccharide degradation fingerprinting experiments suggest cellopentaose as the minimal length substrate and ThermalFluor studies indicate that NcCel45A displays excellent stability at elevated temperatures up to 70 °C and pHs ranging from 5 to 9. Remarkably, we show that NcCel45A is uniquely resistant to a wide-range of organic solvents and small-angle X-ray scattering show a monkey-wrench molecular shape structure in solution, which indicates, unlike to other known cellulases, a non-fully extended conformation, thus conferring solvent protection. These NcCel45A unique enzymatic properties maybe key for specific industrial applications such as cotton fiber processing and detergent formulations.


Asunto(s)
Celulasa/metabolismo , Glucanos/metabolismo , Neurospora crassa/enzimología , beta-Glucanos/metabolismo , Secuencia de Aminoácidos , Celulasa/química , Celulasa/genética , Celulasa/aislamiento & purificación , Clonación Molecular , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Conformación Proteica , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Difracción de Rayos X
10.
Artículo en Inglés | MEDLINE | ID: mdl-23722852

RESUMEN

Xyloglucanases (Xghs) are important enzymes involved in xyloglucan modification and degradation. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacterium which produces a large number of glycosyl hydrolases (GH), but has only one family 74 GH (Xcc-Xgh). This enzyme was overexpressed in Escherichia coli, purified and crystallized. Diffraction data sets were collected for the native enzyme and its complex with glucose to maximum resolutions of 2.0 and 2.1 Å, respectively. The data were indexed in a hexagonal crystal system with unit-cell parameters a = b = 153.4, c = 84.9 Å. As indicated by molecular-replacement solution, the crystals belonged to space group P6(1).


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Xanthomonas campestris/enzimología , Proteínas Bacterianas/análisis , Cristalización , Glicósido Hidrolasas/análisis , Difracción de Rayos X
11.
Biochim Biophys Acta ; 1824(2): 359-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22154803

RESUMEN

The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qß replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the ß-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted ß-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution.


Asunto(s)
Herbaspirillum/química , Proteína de Factor 1 del Huésped/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Cromatografía en Gel , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Histidina/química , Proteína de Factor 1 del Huésped/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA