Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 632(8027): 1165-1173, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085614

RESUMEN

DNA crosslinks block DNA replication and are repaired by the Fanconi anaemia pathway. The FANCD2-FANCI (D2-I) protein complex is central to this process as it initiates repair by coordinating DNA incisions around the lesion1. However, D2-I is also known to have a more general role in DNA repair and in protecting stalled replication forks from unscheduled degradation2-4. At present, it is unclear how DNA crosslinks are recognized and how D2-I functions in replication fork protection. Here, using single-molecule imaging, we show that D2-I is a sliding clamp that binds to and diffuses on double-stranded DNA. Notably, sliding D2-I stalls on encountering single-stranded-double-stranded (ss-ds) DNA junctions, structures that are generated when replication forks stall at DNA lesions5. Using cryogenic electron microscopy, we determined structures of D2-I on DNA that show that stalled D2-I makes specific interactions with the ss-dsDNA junction that are distinct from those made by sliding D2-I. Thus, D2-I surveys dsDNA and, when it reaches an ssDNA gap, it specifically clamps onto ss-dsDNA junctions. Because ss-dsDNA junctions are found at stalled replication forks, D2-I can identify sites of DNA damage. Therefore, our data provide a unified molecular mechanism that reconciles the roles of D2-I in the recognition and protection of stalled replication forks in several DNA repair pathways.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Animales , Femenino , Humanos , Extractos Celulares , Microscopía por Crioelectrón , Difusión , ADN/química , ADN/metabolismo , ADN/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/ultraestructura , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/ultraestructura , Modelos Moleculares , Unión Proteica , Imagen Individual de Molécula , Xenopus laevis
2.
Nat Commun ; 13(1): 5921, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207294

RESUMEN

Resolution of Holliday junctions is a critical intermediate step of homologous recombination in which junctions are processed by junction-resolving endonucleases. Although binding and cleavage are well understood, the question remains how the enzymes locate their substrate within long duplex DNA. Here we track fluorescent dimers of endonuclease I on DNA, presenting the complete single-molecule reaction trajectory for a junction-resolving enzyme finding and cleaving a Holliday junction. We show that the enzyme binds remotely to dsDNA and then undergoes 1D diffusion. Upon encountering a four-way junction, a catalytically-impaired mutant remains bound at that point. An active enzyme, however, cleaves the junction after a few seconds. Quantitative analysis provides a comprehensive description of the facilitated diffusion mechanism. We show that the eukaryotic junction-resolving enzyme GEN1 also undergoes facilitated diffusion on dsDNA until it becomes located at a junction, so that the general resolution trajectory is probably applicable to many junction resolving enzymes.


Asunto(s)
ADN Cruciforme , ADN , ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA