Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(8): 1757-1772, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39017707

RESUMEN

The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free-energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.


Asunto(s)
Técnicas Biosensibles , Simulación de Dinámica Molecular , Unión Proteica , Técnicas Biosensibles/métodos , Ligandos , Morfolinas/química , Morfolinas/metabolismo , Benzoxazinas/química , Benzoxazinas/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Pliegue de Proteína , Ingeniería de Proteínas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química
2.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38586024

RESUMEN

The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem which could enable many practical applications of protein biosensors. In this work, we analyzed two engineer ed biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.

3.
J Pharm Sci ; 113(8): 2072-2080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643898

RESUMEN

Enveloped viruses are attractive candidates for use as gene- and immunotherapeutic agents due to their efficacy at infecting host cells and delivering genetic information. They have also been used in vaccines as potent antigens to generate strong immune responses, often requiring fewer doses than other vaccine platforms as well as eliminating the need for adjuvants. However, virus instability in liquid formulations may limit their shelf life and require that these products be transported and stored under stringently controlled temperature conditions, contributing to high cost and limiting patient access. In this work, spray-drying and lyophilization were used to embed an infectious enveloped virus within dry, glassy polysaccharide matrices. No loss of viral titer was observed following either spray-drying (at multiple drying gas temperatures) or lyophilization. Furthermore, viruses embedded in the glassy formulations showed enhanced thermal stability, retaining infectivity after exposure to elevated temperatures as high as 85 °C for up to one hour, and for up to 10 weeks at temperatures as high as 30 °C. In comparison, viruses in liquid formulations lost infectivity within an hour at temperatures above 40 °C, or after incubation at 25 °C for longer periods of time.


Asunto(s)
Liofilización , Secado por Pulverización , Liofilización/métodos , Animales , Estabilidad de Medicamentos , Temperatura , Humanos
4.
Nat Commun ; 15(1): 2299, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485940

RESUMEN

Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizing Bacillus subtilis Lipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme's folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.


Asunto(s)
Bacillus subtilis , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Bacillus subtilis/metabolismo , Lipasa/metabolismo , Temperatura , Biocatálisis , Chaperonas Moleculares/metabolismo
5.
J Am Chem Soc ; 146(13): 9112-9123, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38500441

RESUMEN

Recent advances have demonstrated the promise of complex multicomponent polymeric supports to enable supra-biological enzyme performance. However, the discovery of such supports has been limited by time-consuming, low-throughput synthesis and screening. Here, we describe a novel combinatorial and high-throughput platform that enables rapid screening of complex and heterogeneous copolymer brushes as enzyme immobilization supports, named combinatorial high-throughput enzyme support screening (CHESS). Using a 384-well plate format, we synthesized arrays of three-component polymer brushes in the microwells using photoactivated surface-initiated polymerization and immobilized enzymes in situ. The utility of CHESS to identify optimal immobilization supports under thermally and chemically denaturing conditions was demonstrated usingBacillus subtilisLipase A (LipA). The identification of supports with optimal compositions was validated by immobilizing LipA on polymer-brush-modified biocatalyst particles. We further demonstrated that CHESS could be used to predict the optimal composition of polymer brushes a priori for the previously unexplored enzyme, alkaline phosphatase (AlkP). Our findings demonstrate that CHESS represents a predictable and reliable platform for dramatically accelerating the search of chemical compositions for immobilization supports and further facilitates the discovery of biocompatible and stabilizing materials.


Asunto(s)
Enzimas Inmovilizadas , Ensayos Analíticos de Alto Rendimiento , Enzimas Inmovilizadas/química , Polímeros/química
6.
Colloids Surf B Biointerfaces ; 233: 113661, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006709

RESUMEN

Identification of the mechanisms by which viruses lose activity during droplet formation and drying is of great importance to understanding the spread of infectious diseases by virus-containing respiratory droplets and to developing thermally stable spray dried live or inactivated viral vaccines. In this study, we exposed suspensions of baculovirus, an enveloped virus, to isolated mechanical stresses similar to those experienced during respiratory droplet formation and spray drying: fluid shear forces, osmotic pressure forces, and surface tension forces at interfaces. DNA released from mechanically stressed virions was measured by SYBR Gold staining to quantify viral capsid disruption. Theoretical estimates of the force exerted by fluid shear, osmotic pressures and interfacial tension forces during respiratory droplet formation and spray drying suggest that osmotic and interfacial stresses have greater potential to mechanically destabilize viral capsids than forces associated with shear stresses. Experimental results confirmed that rapid changes in osmotic pressure, such as those associated with drying of virus-containing droplets, caused significant viral capsid disruption, whereas the effect of fluid shear forces was negligible. Surface tension forces were sufficient to provoke DNA release from virions adsorbed at air-water interfaces, but the extent of this disruption was limited by the time required for virions to diffuse to interfaces. These results demonstrate the effect of isolated mechanical stresses on virus particles during droplet formation and drying.


Asunto(s)
Cápside , Virión , Estrés Mecánico , Tensión Superficial , ADN
7.
Biomacromolecules ; 24(9): 4033-4041, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37610792

RESUMEN

Protein-polymer conjugation provides an opportune means to adjust the local environment of proteins and enhance protein stability, performance, and solubility. Although much attention has been focused on tuning protein-polymer interactions, the properties of polymer-modified proteins may also be altered by polymer-polymer interactions. Herein, we sought to better understand the influence of polymer-polymer interactions on Candida rugosa lipase, which was modified with random co-polymers composed of sulfobetaine methacrylate (SBMA) and poly(ethylene glycol) methacrylate (PEGMA). Our findings suggest that there is an apparent activity-stability tradeoff as a function of polymer composition. Specifically, as the ratio of SBMA to PEGMA increased, lipase stability was enhanced, whereas activity decreased. By tuning the monomer ratio, we showed that lipase productivity could be optimized. These findings are discussed in the context of complex enzyme-polymer and polymer-polymer interactions and ultimately may enable more informed conjugate designs and improved enzyme productivity in industrial biotransformations under harsh or extreme conditions.


Asunto(s)
Polietilenglicoles , Polímeros , Lipasa , Metacrilatos
8.
Colloids Surf B Biointerfaces ; 220: 112904, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36265317

RESUMEN

The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Fosfolípidos/química , Membrana Dobles de Lípidos/química , Insulina , Amiloide/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-35652291

RESUMEN

Liquid crystal elastomers (LCEs) are stimuli-responsive materials that undergo large shape transformations after undergoing an order-disorder transition. While shape reconfigurations in LCEs are predominantly triggered by heat, there is a considerable interest in developing highly specific triggers that work at room temperature. Herein, we report the fabrication of biocatalytic LCEs that respond to the presence of urea by covalently immobilizing urease within chemically responsive LCE networks. The hydrogen-bonded LCEs developed in this work exhibited contractile strains of up to 36% upon exposure to a base. Notably, the generation of ammonia by immobilized urease triggered a disruption in the supramolecular network and a large reduction of liquid crystalline order in the films when the LCEs were exposed to urea. This reduction in order was macroscopically translated into a strain response that could be modulated by changing the concentration of urea or exposure time to the substrate. Local control of the mechanical response of the LCE was realized by spatially patterning the enzyme on the surface of the films. Subsequent exposure of enzymatically patterned LCE to urea-triggered 3D shape transformations into a curl, arch, or accordion-like structure, depending on the motif patterned on the film surface. Furthermore, we showed that the presence of salt was critical to prevent bridging of the network by the presence of ammonium ions, thereby enabling such macroscopic 3D shape changes. The large actuation potential of LCEs and the ability to translate the biocatalytic activity of enzymes to macroscopic 3D shape transformations could enable use in applications ranging from cell culture, medicine, or antifouling.

10.
ACS Appl Bio Mater ; 5(3): 1252-1258, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35166523

RESUMEN

We herein describe a highly versatile platform approach for the in situ and real-time screening of microbial biocatalysts for enhanced production of bioproducts using photonic crystal hydrogels. This approach was demonstrated by preparing optically diffracting films based on polymerized N-isopropylacrylamide that contracted in the presence of alcohols and organic acids. The hydrogel films were prepared in a microwell plate format, which allows for high-throughput screening, and characterized optically using a microwell plate reader. While demonstrating the ability to detect a broad range of relevant alcohols and organic acids, we showed that the response of the films correlated strongly with the octanol-water partition coefficient (log P) of the analyte. Differences in the secretion of ethanol and succinic acid from strains of Zymomonas mobilis and Actinobacillus succinogenes, respectively, were further detected via optical characterization of the films. These differences, which in some cases were as low as ∼3 g/L, were confirmed by high-performance liquid chromatography, thereby demonstrating the sensitivity of this approach. Our findings highlight the potential utility of this multiplexed approach for the detection of small organic analytes in complex biological media, which overcomes a major challenge in conventional optical sensing methods.


Asunto(s)
Hidrogeles , Compuestos Orgánicos , Ácidos , Alcoholes , Medios de Cultivo/química , Octanoles
11.
Protein Eng Des Sel ; 342021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34935952

RESUMEN

Cellulases are largely afflicted by inhibition from their reaction products, especially at high-substrate loading, which represents a major challenge for biomass processing. This challenge was overcome for endoglucanase 1 (E1) from Acidothermus cellulolyticus by identifying a large conformational change involving distal residues upon binding cellobiose. Having introduced alanine substitutions at each of these residues, we identified several mutations that reduced cellobiose inhibition of E1, including W212A, W213A, Q247A, W249A and F250A. One of the mutations (W212A) resulted in a 47-fold decrease in binding affinity of cellobiose as well as a 5-fold increase in the kcat. The mutation further increased E1 activity on Avicel and dilute-acid treated corn stover and enhanced its productivity at high-substrate loadings. These findings were corroborated by funnel metadynamics, which showed that the W212A substitution led to reduced affinity for cellobiose in the +1 and +2 binding sites due to rearrangement of key cellobiose-binding residues.


Asunto(s)
Celulasa , Celulasas , Actinobacteria , Dominio Catalítico , Celobiosa
12.
J Am Chem Soc ; 143(40): 16740-16749, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34590861

RESUMEN

Liquid crystal polymer networks (LCNs) are stimuli-responsive materials that can be programmed to realize spatial variation in mechanical response and undergo shape transformation. Herein, we report a process to introduce chemical specificity to the stimuli response of LCNs by integrating enzymes as molecular triggers. Specifically, the enzyme urease was immobilized in LCN films via acyl fluoride conjugation chemistry. Activity assays and confocal fluorescence imaging confirmed retention of urease activity after immobilization as well as widespread distribution of enzyme on the film. The addition of urea triggered a response in the LCN whereby newly generated ammonia reacted with free acyl fluorides to form benzamide moieties. These moieties were capable of dimerizing through the formation of supramolecular hydrogen bonds, which was reflected in a 4-fold increase in Young's modulus. Through dynamic mechanical analysis and calorimetry, we further confirmed that the degree of hydrogen bonding in the LCNs could be judiciously designed to fine-tune the mechanical properties and glass transition temperature. These findings demonstrate the untapped potential of biochemical mechanisms as molecular triggers in LCNs and open the door to the use of nucleophilic chemistries in modulating the mechanical properties of LCNs.


Asunto(s)
Polímeros
13.
ACS Appl Mater Interfaces ; 13(23): 26694-26703, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34081428

RESUMEN

A long-standing goal in the field of biotechnology is to develop and understand design rules for the stabilization of enzymes upon immobilization to materials. While immobilization has sometimes been successful as a strategy to stabilize enzymes, the design of synthetic materials that stabilize enzymes remains largely empirical. We sought to overcome this challenge by investigating the mechanistic basis for the stabilization of immobilized lipases on random copolymer brush surfaces comprised of poly(ethylene glycol) methacrylate (PEGMA) and sulfobetaine methacrylate (SBMA), which represent novel heterogeneous supports for immobilized enzymes. Using several related but structurally diverse lipases, including Bacillus subtilis lipase A (LipA), Rhizomucor miehei lipase, Candida rugosa lipase, and Candida antarctica lipase B (CALB), we showed that the stability of each lipase at elevated temperatures was strongly dependent on the fraction of PEGMA in the brush layer. This dependence was explained by developing and applying a new algorithm to quantify protein surface hydrophobicity, which involved using unsupervised cluster analysis to identify clusters of hydrophobic atoms. Characterization of the lipases showed that the optimal brush composition correlated with the free energy of solvation per enzyme surface area, which ranged from -17.1 kJ/mol·nm2 for LipA to -11.8 kJ/mol·nm2 for CALB. Additionally, using this algorithm, we found that hydrophobic patches consisting of aliphatic residues had a higher free energy than patches consisting of aromatic residues. By providing the basis for rationally tuning the interface between enzymes and materials, this understanding will transform the use of materials to reliably ruggedize enzymes under extreme conditions.


Asunto(s)
Biotecnología/normas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Polímeros/química , Polímeros/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Estabilidad de Enzimas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas
14.
J Am Chem Soc ; 143(18): 7154-7163, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33914511

RESUMEN

During integration into materials, the inactivation of enzymes as a result of their interaction with nanometer size denaturing "hotspots" on surfaces represents a critical challenge. This challenge, which has received far less attention than improving the long-term stability of enzymes, may be overcome by limiting the exploration of surfaces by enzymes. One way this may be accomplished is through increasing the rate constant of the surface ligation reaction and thus the probability of immobilization with reactive surface sites (i.e., ligation efficiency). Here, the connection between ligation reaction efficiency and the retention of enzyme structure and activity was investigated by leveraging the extremely fast reaction of strained trans-cyclooctene (sTCOs) and tetrazines (Tet). Remarkably, upon immobilization via Tet-sTCO chemistry, carbonic anhydrase (CA) retained 77% of its solution-phase activity, while immobilization via less efficient reaction chemistries, such as thiol-maleimide and azide-dibenzocyclooctyne, led to activity retention of only 46% and 27%, respectively. Dynamic single-molecule fluorescence tracking methods further revealed that longer surface search distances prior to immobilization (>0.5 µm) dramatically increased the probability of CA unfolding. Notably, the CA distance to immobilization was significantly reduced through the use of Tet-sTCO chemistry, which correlated with the increased retention of structure and activity of immobilized CA compared to the use of slower ligation chemistries. These findings provide an unprecedented insight into the role of ligation reaction efficiency in mediating the exploration of denaturing hotspots on surfaces by enzymes, which, in turn, may have major ramifications in the creation of functional biohybrid materials.


Asunto(s)
Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Conformación Proteica , Desplegamiento Proteico , Propiedades de Superficie
15.
Biochemistry ; 59(41): 3993-4002, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32970423

RESUMEN

While loop motifs frequently play a major role in protein function, our understanding of how to rationally engineer proteins with novel loop domains remains limited. In the absence of rational approaches, the incorporation of loop domains often destabilizes proteins, thereby requiring massive screening and selection to identify sites that can accommodate loop insertion. We developed a computational strategy for rapidly scanning the entire structure of a scaffold protein to determine the impact of loop insertion at all possible amino acid positions. This approach is based on the Rosetta kinematic loop modeling protocol and was demonstrated by identifying sites in lipase that were permissive to insertion of the LAP peptide. Interestingly, the identification of permissive sites was dependent on the contribution of the residues in the near-loop environment on the Rosetta score and did not correlate with conventional structural features (e.g., B-factors). As evidence of this, several insertion sites (e.g., following residues 17, 47-49, and 108), which were predicted and confirmed to be permissive, interrupted helices, while others (e.g., following residues 43, 67, 116, 119, and 121), which are situated in loop regions, were nonpermissive. This approach was further shown to be predictive for ß-glucosidase and human phosphatase and tensin homologue (PTEN), and to facilitate the engineering of insertion sites through in silico mutagenesis. By enabling the design of loop-containing protein libraries with high probabilities of soluble expression, this approach has broad implications in many areas of protein engineering, including antibody design, improving enzyme activity, and protein modification.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Sitios de Unión , Humanos , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína
16.
J Phys Chem Lett ; 11(17): 7417-7422, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32803986

RESUMEN

While many approaches to reduce fibrillation of amyloid-ß (Aß) have been aimed at slowing fibril formation, the degradation of fibrils remains challenging. We provide insight into fibril degradation as well as the inhibition of fiber formation by lipid vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol). In the presence of vesicles with the optimal lipid composition, fibril formation was inhibited up to 76%. Additionally, by tuning the lipid composition, mature fibril content decreased up to 74% and the ß-sheet content of Aß was significantly reduced. The reduction in fibril and ß-sheet content was consistent with a decrease in fibril diameter and could be attributed to the chaperone-like activity of the mixed vesicles. While demonstrating this remarkable activity, our findings present new evidence that lipid composition has a significant effect on the strength of the interaction between lipid bilayers and Aß peptides/fibrils. This understanding has intriguing therapeutic implications in treating protein misfolding diseases.


Asunto(s)
Amiloide/química , Fosfolípidos/química , Fosfolípidos/farmacología , Agregado de Proteínas/efectos de los fármacos , Catálisis , Glicerol/química , Modelos Moleculares , Fosforilcolina/química , Conformación Proteica en Lámina beta
17.
ACS Appl Mater Interfaces ; 12(20): 22640-22649, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32352745

RESUMEN

Polyelectrolyte multilayers (PEMs) are attractive materials for immobilizing enzymes due to their unique ionic environment, which can prevent unfolding. Here, we demonstrated that the stability to dry storage and elevated pH were significantly enhanced when negatively charged nitroreductase (NfsB) was embedded in a PEM by depositing alternating layers of the enzyme and polycation (PC) onto porous silica particles. The PC strength (i.e., pKa) and the surface charge of the film were varied to probe the effects that internal and surface chemistry had on the pH stability of the entrapped NfsB. All films showed enhanced activity retention at elevated pH (>6), and inactivation at reduced pH (<6) similar to NfsB in solution, indicating that the primary stabilizing effect of immobilization was achieved through ionic interactions between NfsB and the PC and not through changes to the surface charge of the NfsB. Additionally, films that were stored dry at 4 °C for 1 month retained full activity, while those stored at room temperature lost 30% activity. Remarkably, at 50 °C, above the NfsB melting temperature, 40% activity was retained after 1 month of dry storage. Our results suggest that internal film properties are significantly more important than surface charge, which had minor effects on activity. Specifically, immobilization with the weak PC, poly(l-lysine), increased the optimal pH and the activity of immobilized NfsB (which we attribute to greater permeability), relative to immobilization with the strong PC, poly(diallyldimethylammonium chloride). However, NfsB was leached from the PLL film to a greater extent. Overall, these observations demonstrate that internal ionic cross-linking is key to the stabilizing effects of PEMs and that the pH response can be tuned by controlling the number of cross-links (e.g., by changing the strength of the PC). However, this may be at the cost of reduced loading, illustrating the necessity of simultaneously optimizing enzyme loading, internal ionic cross-linking, and substrate transport.


Asunto(s)
Enzimas Inmovilizadas/química , Proteínas de Escherichia coli/química , Nitrorreductasas/química , Polielectrolitos/química , Polietilenos/química , Polilisina/química , Compuestos de Amonio Cuaternario/química , Estabilidad de Enzimas , Escherichia coli/enzimología , Concentración de Iones de Hidrógeno
18.
ACS Synth Biol ; 9(5): 1083-1099, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32298586

RESUMEN

In E. coli, editing efficiency with Cas9-mediated recombineering varies across targets due to differences in the level of Cas9:gRNA-mediated DNA double-strand break (DSB)-induced cell death. We found that editing efficiency with the same gRNA and repair template can also change with target position, cas9 promoter strength, and growth conditions. Incomplete editing, off-target activity, nontargeted mutations, and failure to cleave target DNA even if Cas9 is bound also compromise editing efficiency. These effects on editing efficiency were gRNA-specific. We propose that differences in the efficiency of Cas9:gRNA-mediated DNA DSBs, as well as possible differences in binding of Cas9:gRNA complexes to their target sites, account for the observed variations in editing efficiency between gRNAs. We show that editing behavior using the same gRNA can be modified by mutating the gRNA spacer, which changes the DNA DSB activity. Finally, we discuss how variable editing with different gRNAs could limit high-throughput applications and provide strategies to overcome these limitations.


Asunto(s)
Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Edición Génica/métodos , Roturas del ADN de Doble Cadena , Escherichia coli/metabolismo , Galactoquinasa/genética , Mutación , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo
19.
Mol Syst Biol ; 16(3): e9265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32175691

RESUMEN

Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.


Asunto(s)
Escherichia coli/genética , Genes Esenciales , Ingeniería Genética/métodos , Mutación , Sistemas CRISPR-Cas , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , ARN Guía de Kinetoplastida/farmacología , Recombinación Genética
20.
J Am Chem Soc ; 142(7): 3463-3471, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31986020

RESUMEN

The successful incorporation of enzymes into materials through multipoint covalent immobilization (MPCI) has served as the foundation for numerous advances in diverse fields, including biocatalysis, biosensing, and chemical weapons defense. Despite this success, a mechanistic understanding of the impact of this approach on enzyme stability has remained elusive, which is critical for realizing the full potential of MPCI. Here, we showed that the stabilization of lipase upon MPCI to polymer brush surfaces resulted from the rigidification of the enzyme with an increase in the number of enzyme-brush attachments. This was evident by a 10-fold decrease in the rates of enzyme unfolding and refolding as well as a reduction of the intrinsic fluctuations of the folded and unfolded states, which was measured by single-molecule (SM) Förster Resonance Energy Transfer imaging. Moreover, our results illuminate an important trade-off between stability and activity as a function of this decrease in structural dynamics of the immobilized lipase. Notably, as the thermal stability of lipase increased, as indicated by the temperature optimum for activity of the enzyme, the specific activity of lipase decreased. This decrease in activity was attributed to a reduction in the essential motions of the folded state that are required for catalytic turnover of substrate. These results provide direct evidence of this effect, which has long been a matter of speculation. Furthermore, our findings suggest that the retention of activity and stabilization of an enzyme may be balanced by tuning the extent of enzyme attachment.


Asunto(s)
Bacillus subtilis/enzimología , Enzimas Inmovilizadas/química , Metacrilatos/química , Esterol Esterasa/química , Catálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Pliegue de Proteína , Esterol Esterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA