Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 14: 951-963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736660

RESUMEN

In this work, we present the development of an atomic layer deposition (ALD) process for metallic cobalt. The process operates at low temperatures using dicobalt hexacarbonyl-1-heptyne [Co2(CO)6HC≡CC5H11] and hydrogen plasma. For this precursor an ALD window in the temperature range between 50 and 110 °C was determined with a constant deposition rate of approximately 0.1 Å/cycle. The upper limit of the ALD window is defined by the onset of the decomposition of the precursor. In our case, decomposition occurs at temperatures of 125 °C and above, resulting in a film growth in chemical vapour deposition mode. The lower limit of the ALD window is around 35 °C, where the reduction of the precursor is incomplete. The saturation behaviour of the process was investigated. X-ray photoelectron spectroscopy measurements could show that the deposited cobalt is in the metallic state. The finally established process in ALD mode shows a homogeneous coating at the wafer level.

2.
Phys Chem Chem Phys ; 23(47): 26750-26760, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34846390

RESUMEN

UV/Vis absorption data of (E)-4-(2-[5-{4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl}thiene-2-yl]vinyl)-2-(dicyano-methylene)-3-cyano-5,5-dimethyl-2,5-dihydrofuran (ThTCF) as a solvatochromic probe is applied to examine the anion coordination strength (e.g. of N(CN)2, BF4, PF6, N(Tf)2, CF3COO) as a function of the cation structure of ionic liquids. Several 1-n-alky-3-methylimidazolium- and tetraalkylammonium CH3-NR3+-based ILs with different n-alkyl chain lengths (R = -C4H9, -C6H11, -C8H17, -C10H21) are considered. UV/Vis absorption data of ThTCF show subtle correlations with hydrogen bond accepting (HBA) ability-related measurands such as Kamlet-Taft ß, Freire's EHB, and Laurence ß1 parameter as a function of anion and cation structure. The different influence of the n-alkyl chain length of imidazolium- and tetraalkylammonium-based ILs on the dipolarity and HBA strength is confirmed by comparison with the 14N isotropic hyperfine coupling constants (Aiso) of a positively (CATI) and negatively charged spin probe (TSKCr) of TEMPO-type [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] and quantum chemically derived dipoles of the cations. The Aiso values correlate with the absorption energy of ThTCF and EHB, but in different ways depending on the anion or charge of the spin probe. In a final discussion of the ß, EHB, and ß1 scales in relation to ThTCF, the importance of the molar concentration N of ionic liquids for the physical significance of the respective parameters is discussed.

3.
ACS Macro Lett ; 10(3): 389-394, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35549062

RESUMEN

Water-soluble bis(N-acylpiperidone)s with aldehyde-like reactivity are reported to react rapidly with polyvinylamine at room temperature, providing unprecedented clean reaction products. Unlike most amine/ketone reactions that result in arbitrary mixtures of imines, aminals, hemiaminals, or hydrates, in the present study hemiaminals, aminals, or hemiaminal/aminal mixtures are exclusively found. Detailed NMR spectroscopy of solutions, gels, and solids, aided by model reactions, reveals that the hemiaminal/aminal ratio depends on pH, water content, and cross-linking density. Network formation is fully reversible upon changes in pH, with the resulting moduli from rheology spanning almost 3 orders of magnitude. The self-healing ability of the system is probed by rheology as well, demonstrating maintained material properties of fractured and healed samples. The unusually clean, fast, and reversible chemistry highlights bispiperidones as a class of efficient building blocks with unprecedented possibilities in dynamic covalent chemistry.


Asunto(s)
Hidrogeles , Polivinilos , Hidrogeles/química , Reología , Agua
4.
RSC Adv ; 10(68): 41926-41935, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35516555

RESUMEN

Highly porous carbon-carbon composite electrodes have been synthesized by surface twin polymerization on a macroporous polyacrylonitrile (PAN)-based substrate. For this purpose the compound 2,2'-spirobi[benzo-4H-1,3,2-dioxasiline] (Spiro), being a molecular precursor for phenolic resin and silica, was polymerized onto PAN-based felts with subsequent thermal transformation of the hybrid material-coated felt into silica-containing carbon. The following etching step led to high surface carbon-carbon composite materials, where each carbon component served a different function in the battery electrode: the carbon fiber substrate possesses a high electron conductivity, while the amorphous carbon coating provides the catalytic function. For characterization of the composite materials with respect to structure, porosity and pore size distribution scanning electron microscopy (SEM) as well as nitrogen sorption measurements (BET) were performed. The electrochemical performance of the carbon felts (CF) for application in all-vanadium redox flow batteries was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Compared to the pristine PAN-based felt the composite electrodes show significantly enhanced surface areas (up to 35 times higher), which increases the amount of vanadium ions that could be adsorbed onto the surface and thus contributes to an increased performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA