Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Microbiol Immunol ; 213(1): 18, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101951

RESUMEN

Outbreaks of emerging diseases, like Mpox in 2022, pose unprecedented challenges to global healthcare systems. Although Mpox cases globally decreased since the end of 2022, numbers are still significant in the African Region, European Region, Region of the Americas, and Western Pacific Region. Rapid and efficient detection of infected individuals by precise screening assays is crucial for successful containment. In these assays, analytical and clinical performance must be assessed to ensure high quality. However, clinical studies evaluating Mpox virus (MPXV) detection kits using patient-derived samples are scarce. This study evaluated the analytical and clinical performance of a new diagnostic MPXV real-time PCR detection kit (Sansure Monkeypox Virus Nucleic Acid Diagnostic Kit) using patient-derived samples collected in Germany during the MPXV clade IIb outbreak in 2022. Our experimental approach determined the Limit of Detection (LoD) to less than 200 cp/mL using whole blood samples and samples derived from vesicles or pustules. Furthermore, we tested potentially inhibiting substances and pathogens with homologous nucleic acid sequences or similar clinical presentation and detected no cross-reactivity or interference. Following this, the assay was compared to a CE-marked test in a clinical performance study and achieved a diagnostic sensitivity of 100.00% and diagnostic specificity of 96.97%. In summary, the investigated real-time PCR assay demonstrates high analytical performance and concurs with the competitor device with high specificity and sensitivity.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Alemania/epidemiología , Mpox/diagnóstico , Mpox/virología , Juego de Reactivos para Diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Límite de Detección , Brotes de Enfermedades , Parapoxvirus/aislamiento & purificación , Parapoxvirus/genética
2.
Nanomaterials (Basel) ; 10(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998422

RESUMEN

In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.

3.
Biosens Bioelectron ; 165: 112345, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32513645

RESUMEN

We describe an impedance-based method for cell barrier integrity testing. A four-electrode electrical impedance spectroscopy (EIS) setup can be realized by simply connecting a commercial chopstick-like electrode (STX-1) to a potentiostat allowing monitoring cell barriers cultivated in transwell inserts. Subsequent electric circuit modeling of the electrical impedance results the capacitive properties of the barrier next to the well-known transepithelial electrical resistance (TEER). The versatility of the new method was analyzed by the EIS analysis of a Caco-2 monolayer in response to (a) different membrane coating materials, (b) two different permeability enhancers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and saponin, and (c) sonoporation. For the different membrane coating materials, the TEERs of the standard and new protocol coincide and increase during cultivation, while the capacitance shows a distinct maximum for three different surface materials (no coating, Matrigel®, and collagen I). The permeability enhancers cause a decline in the TEER value, but only saponin alters the capacitance of the cell layer by two orders of magnitude. Hence, cell layer capacitance and TEER represent two independent properties characterizing the monolayer. The use of commercial chopstick-like electrodes to access the impedance of a barrier cultivated in transwell inserts enables remarkable insight into the behavior of the cellular barrier with no extra work for the researcher. This simple method could evolve into a standard protocol used in cell barrier research.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Células CACO-2 , Impedancia Eléctrica , Células Epiteliales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA