Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 16(38): e2002529, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32776465

RESUMEN

Elevated temperatures might have promoted the nucleation, growth, and replication of protocells on the early Earth. Recent reports have shown evidence that moderately high temperatures not only permit protocell assembly at the origin of life, but can have actively supported it. Here, the fast nucleation and growth of vesicular compartments from autonomously formed lipid networks on solid surfaces, induced by a moderate increase in temperature, are shown. Branches of the networks, initially consisting of self-assembled interconnected nanotubes, rapidly swell into microcompartments which can spontaneously encapsulate RNA fragments. The increase in temperature further causes fusion of adjacent network-connected compartments, resulting in the redistribution of the RNA. The experimental observations and the mathematical model indicate that the presence of nanotubular interconnections between protocells facilitates the fusion process.


Asunto(s)
Células Artificiales , Nanotubos , Membrana Celular , ARN
2.
ACS Nano ; 13(6): 6867-6878, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31177769

RESUMEN

Cellular compartments are membrane-enclosed, spatially distinct microenvironments that confine and protect biochemical reactions in the biological cell. On the early Earth, the autonomous formation of compartments is thought to have led to the encapsulation of nucleotides, thereby satisfying a starting condition for the emergence of life. Recently, surfaces have come into focus as potential platforms for the self-assembly of prebiotic compartments, as significantly enhanced vesicle formation was reported in the presence of solid interfaces. The detailed mechanism of such formation at the mesoscale is still under discussion. We report here on the spontaneous transformation of solid-surface-adhered lipid deposits to unilamellar membrane compartments through a straightforward sequence of topological changes, proceeding via a network of interconnected lipid nanotubes. We show that this transformation is entirely driven by surface-free energy minimization and does not require hydrolysis of organic molecules or external stimuli such as electrical currents or mechanical agitation. The vesicular structures take up and encapsulate their external environment during formation and can subsequently separate and migrate upon exposure to hydrodynamic flow. This may link the self-directed transition from weakly organized bioamphiphile assemblies on solid surfaces to protocells with secluded internal contents.


Asunto(s)
Nanotubos/química , Origen de la Vida , Liposomas Unilamelares/química , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA