RESUMEN
Deschampsia antarctica Desv, is the most successful colonizing species of a cold continent. In recent years due to climate change, the frequency of heat waves has increased in Antarctica, registering anomalous high temperatures during the summer of 2020. However, the populations of D. antarctica are responding positively to these events, increasing in number and size throughout the Antarctic Peninsula. In this work, the physiological and biochemical responses of D. antarctica plants grown in vitro (15 ± 1°C) and plants subjected to two heat shock treatments (23 and 35°C) were evaluated. The results obtained show that D. antarctica grown in vitro is capable of tolerating heat shock treatments; without showing visible damage to its morphology, or changes in its oxidative state and photosynthetic performance. These tolerance responses are primarily mediated by the efficient role of enzymatic and non-enzymatic antioxidant systems that maintain redox balance at higher temperatures. It is postulated that these mechanisms also operate in plants under natural conditions when exposed to environmental stresses.
RESUMEN
Common alloys used for the manufacture of aircrafts are subject to different forms of environmental deterioration. A major one is corrosion, and there is a strong body of evidence suggesting that environmental microorganisms initiate and accelerate it. The development of an appropriate strategy to reduce this process depends on the knowledge concerning the factors involved in corrosion. In this work, a biofilm forming bacterial consortium was extracted in situ from the corrosion products formed in an aircraft exposed to Antarctic media. Two thermophilic bacteria, an Anoxybacillus and a Staphylococcus strain, were successfully isolated from this consortium. Two extracellular enzymes previously speculated to participate in corrosion, catalase and peroxidase, were detected in the extracellular fraction of the consortium. Additionally, we assessed the individual contribution of those thermophilic microorganisms on the corrosion process of 7075-T6 aluminum alloy, which is widely used in aeronautical industry, through electrochemical methods and surface analysis techniques.
Asunto(s)
Aleaciones/química , Aluminio/química , Anoxybacillus/fisiología , Biopelículas , Anoxybacillus/enzimología , Anoxybacillus/aislamiento & purificación , Regiones Antárticas , Corrosión , Oxidación-Reducción , Staphylococcus/enzimología , Staphylococcus/aislamiento & purificación , Staphylococcus/fisiología , Propiedades de SuperficieRESUMEN
BACKGROUND: One of the most extreme environments on our planet is the Maritime Antarctic territory, due to its low-water availability, which restricts the development of plants. Sanionia uncinata Hedw. (Amblystegiaceae), the main colonizer of the Maritime Antarctic, has effective mechanisms to tolerate this environment. It has been described that the tolerance to desiccation is mediated by the hormone abscisic acid (ABA), antioxidants systems, accumulation of compatible solutes and proteins of the late embryogenesis abundant (LEA). However, to date, these mechanisms have not been described in S. uncinata. Therefore, in this work, we postulate that the tolerance to desiccation in the Antarctic moss S. uncinata is mediated by the accumulation of ABA, the osmolytes proline and glycine betaine, and dehydrins (an LEA class 11 proteins). To demonstrate our hypothesis, S. uncinata was subjected to desiccation for 24 h (loss in 95% of water content), and the effects on its physiological, photosynthetic, antioxidant and biochemical parameters were determined. RESULTS: Our results showed an accumulation of ABA in response to water loss, and the activation of protective responses that involves an increment in levels of proline and glycine betaine, an increment in the activity of antioxidant enzymes such as SOD, CAT, APX and POD, and the accumulation of dehydrins proteins. CONCLUSION: The results showed, suggest that S. uncinata is a desiccation-tolerant moss, property mediated by high cellular plasticity regulated by ABA.
Asunto(s)
Antioxidantes/análisis , Bryopsida/fisiología , Desecación , Fotosíntesis/fisiología , Adaptación Fisiológica , Regiones Antárticas , Bryopsida/química , Bryopsida/clasificación , Factores de TiempoRESUMEN
BACKGROUND: One of the most extreme environments on our planet is the Maritime Antarctic territory, due to its low-water availability, which restricts the development of plants. Sanionia uncinata Hedw. (Amblystegiaceae), the main colonizer of the Maritime Antarctic, has effective mechanisms to tolerate this environment. It has been described that the tolerance to desiccation is mediated by the hormone abscisic acid (ABA), antioxidants systems, accumulation of compatible solutes and proteins of the late embryogenesis abundant (LEA). However, to date, these mechanisms have not been described in S. uncinata. Therefore, in this work, we postulate that the tolerance to desiccation in the Antarctic moss S. uncinata is mediated by the accumulation of ABA, the osmolytes proline and glycine betaine, and dehydrins (an LEA class 11 proteins). To demonstrate our hypothesis, S. uncinata was subjected to desiccation for 24 h (loss in 95% of water content), and the effects on its physiological, photosynthetic, antioxidant and biochemical parameters were determined. RESULTS: Our results showed an accumulation of ABA in response to water loss, and the activation of protective responses that involves an increment in levels of proline and glycine betaine, an increment in the activity of antioxidant enzymes such as SOD, CAT, APX and POD, and the accumulation of dehydrins proteins. CONCLUSION: The results showed, suggest that S. uncinata is a desiccation-tolerant moss, property mediated by high cellular plasticity regulated by ABA.
Asunto(s)
Fotosíntesis/fisiología , Bryopsida/fisiología , Desecación , Antioxidantes/análisis , Factores de Tiempo , Adaptación Fisiológica , Bryopsida/clasificación , Bryopsida/química , Regiones AntárticasRESUMEN
BACKGROUND: In field, C. quitensis is subjected to many abiotic extreme environmental conditions, such as low temperatures, high UV-B, salinity and reduced water potentials, but not metal or metalloid high concentrations in soil, however, other members of Caryophyllaceae family have tolerance to high concentrations of metals, this is the case of Silene genre. In this work, we hypothesize that C. quitensis have the same mechanisms of Silene to tolerate metals, involving accumulation and induction of antioxidant systems, sugar accumulation and the induction of thiols such as phytochelatins to tolerate. RESULTS: The results showing an effective antioxidant defensive machinery involving non-enzymatic antioxidants such as phenolics, GSH and ascorbic acid, in another hand, GSH-related oligomers (phytochelatins) and sugars was induced as a defensive mechanism. CONCLUSIONS: Colobanthus quitensis exhibits certain mechanisms to tolerate copper in vitro demonstrating its plasticity to tolerate several abiotic stress conditions.
Asunto(s)
Antioxidantes/fisiología , Caryophyllaceae/metabolismo , Cobre/farmacología , Fitoquelatinas/metabolismo , Azúcares/análisis , Caryophyllaceae/química , Estrés Oxidativo/fisiología , Fotosíntesis , Azúcares/metabolismoRESUMEN
BACKGROUND: In field, C. quitensis Is subjected to many abiotic extreme environmental conditions, such as low temperatures, high UV-B, salinity and reduced water potentials, but not metal or metalloid high concentrations in soil, however, other members of Caryophyllaceae family have tolerance to high concentrations of metals, this is the case of Silene genre. In this work, we hypothesize that C. quitensis have the same mechanisms of Silene to tolerate metals, involving accumulation and induction of antioxidant systems, sugar accumulation and the induction of thiols such as phytochelatins to tolerate. RESULTS: The results showing an effective antioxidant defensive machinery involving non-enzymatic antioxidants such as phenolics, GSH and ascorbic acid, in another hand, GSH-related oligomers (phytochelatins) and sugars was induced as a defensive mechanism. CONCLUSIONS: Colobanthus quitensis exhibits certain mechanisms to tolerate copper in vitro demonstrating its plasticity to tolerate several abiotic stress conditions.
Asunto(s)
Cobre/farmacología , Caryophyllaceae/metabolismo , Azúcares/análisis , Fitoquelatinas/metabolismo , Antioxidantes/fisiología , Fotosíntesis , Estrés Oxidativo/fisiología , Caryophyllaceae/química , Azúcares/metabolismoRESUMEN
An increasing number of developing countries are experiencing below replacement fertility rates. Although the factors associated with low fertility in developed countries have been widely explored in the literature, studies of low fertility in middle- and low-income countries continue to be rare. To help fill this gap, Brazil was used as a case study to assess whether human development, gender equality and the ability of mothers with young children to work are associated with the likelihood of married or cohabiting women to have a child. For this purpose, multilevel logistic regressions were estimated using the 1991, 2000 and 2010 Brazilian Demographic Censuses. It was found that human development was negatively associated with fertility in the three periods analysed. Gender equality and the ability of mothers with young children to work were positively associated with the odds of having higher order births in Brazil in 2000 and 2010. In 1991, these variables were not associated with higher order births, and gender equality was negatively associated with first births. The positive association found in 2000 and 2010 may constitute a reversal of the relationship that in all likelihood prevailed earlier in the demographic transition when gender equality was most likely negatively correlated with fertility levels.
Asunto(s)
Países en Desarrollo/estadística & datos numéricos , Fertilidad , Brasil , Niño , Composición Familiar , Femenino , Humanos , Dinámica Poblacional , Estadística como Asunto , Derechos de la Mujer/estadística & datos numéricos , Mujeres Trabajadoras/estadística & datos numéricos , Adulto JovenRESUMEN
Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB) radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS) at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA). The enzymatic (superoxide dismutase, SOD and total peroxidases, POD) and non-enzymatic antioxidant activity (total phenolic) increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.
RESUMEN
The antioxidant activity and phenolic composition of six in vitro cultured blueberry seedlings were determined. Extracts were prepared in 85% ethanol from 30 days old in vitro cultured plants and used to evaluate the antioxidant capacities that included Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazin (DPPHâ¢) scavenging ability, total polyphenols (TP) and the partial phenolic composition performed by high performance liquid chromatography with diode array detector (HPLC-DAD), liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS (ESI-QqQ)). All ethanolic extracts from in vitro blueberry cultivars displayed antioxidant activity, with Legacy, Elliott and Bluegold cultivars being the most active. In addition, we observed a positive correlation between phenolic content and antioxidant activity. Our results suggest that the antioxidant activity of the extracts is related to the content of chlorogenic acid myricetin, syringic acid and rutin, and tissue culture of blueberry seedlings is a good tool to obtain antioxidant extracts with reproducible profile of compounds.