Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 39: 103004, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35811052

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is clinically approved to treat neoplastic skin diseases such as precursors of cutaneous squamous cell carcinoma (cSCC). In PDT, 5-aminolevulinic acid (5-ALA) drives the selective formation of the endogenous photosensitizer protoporphyrin IX (PpIX). Although 5-ALA PDT is clinically highly effective, resistance might occur due to decreased accumulation of PpIX in certain tumors. Such resistance may be caused by any fundamental step of PpIX accumulation: 5-ALA uptake, PpIX synthesis and PpIX efflux. METHODS: We investigated PpIX accumulation and photodynamically induced cell death in PDT refractory SCC-13, PDT susceptible A431, and normal human epidermal keratinocytes (NHEK). Expression of genes associated with cellular PpIX kinetics was investigated on mRNA and protein level. PpIX accumulation and cell death upon illumination were pharmacologically manipulated using drugs targeting 5-ALA uptake, PpIX synthesis or efflux. RESULTS: The experiments indicate that taurine transporter (SLC6A6) is the major pathway for 5-ALA uptake in cSCC cells, while being less important in NHEK. Downregulation of PpIX synthesis enzymes in SCC-13 was counteracted by methotrexate (MTX) treatment, which restored PpIX formation and cell death. PpIX efflux inhibitors targeting ABC transporters led to significantly increased PpIX accumulation in SCC-13, thereby fully overcoming resistance. CONCLUSIONS: The results indicate a conserved threshold for PpIX accumulation with respect to PDT-resistance. Cells showed increased viability after PDT at PpIX concentrations below 1.5 nM. Selective uptake of 5-ALA via taurine transporter SLC6A6 in cutaneous tumor cells is novel but unrelated to resistance. MTX can partially abrogate resistance by PpIX synthesis enzyme induction, while efflux mechanisms via ABC transporters seem the main driving force and promising drug targets.


Asunto(s)
Carcinoma de Células Escamosas , Fotoquimioterapia , Neoplasias Cutáneas , Transportadoras de Casetes de Unión a ATP , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico
2.
Front Immunol ; 12: 656941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012440

RESUMEN

Objective: Progressive multiple sclerosis is characterized by chronic inflammation with microglial activation, oxidative stress, accumulation of iron and continuous neurodegeneration with inadequate effectiveness of medications used so far. We now investigated effects of iron on microglia and used the previously identified neuroprotective antipsychotic clozapine in vitro and in chronic experimental autoimmune encephalomyelitis (EAE). Methods: Microglia were treated with iron and clozapine followed by analysis of cell death and response to oxidative stress, cytokine release and neuronal phagocytosis. Clozapine was investigated in chronic EAE regarding optimal dosing and therapeutic effectiveness in different treatment paradigms. Animals were scored clinically by blinded raters. Spinal cords were analyzed histologically for inflammation, demyelination, microglial activation and iron accumulation and for transcription changes of regulators of iron metabolism and inflammation. Effects on immune cells were analyzed using flow cytometry. Results: Iron impaired microglial function in vitro regarding phagocytosis and markers of inflammation; this was regulated by clozapine, reflected in reduced release of IL-6 and normalization of neuronal phagocytosis. In chronic EAE, clozapine dose-dependently attenuated clinical signs and still had an effect if applied in a therapeutic setting. Early mild sedative effects habituated over time. Histologically, demyelination was reduced by clozapine and positive effects on inflammation strongly correlated with reduced iron deposition. This was accompanied by reduced expression of DMT-1, an iron transport protein. Conclusions: Clozapine regulates microglial function and attenuates chronic EAE, even in a therapeutic treatment paradigm. This well-defined generic medication might therefore be considered as promising add-on therapeutic for further development in progressive MS.


Asunto(s)
Antipsicóticos/farmacología , Clozapina/farmacología , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Animales , Biomarcadores , Línea Celular , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Ratones , Estrés Oxidativo , Fagocitosis/inmunología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA