RESUMEN
PURPOSE: This paper analysed from the statistical point of view the trends in observed air temperature in major Polish cities and presented a qualitative analysis of their potential impact on the operation of the selected renewable energy sources. It also reviews the relation between the air temperature and observed electrical load as well as changing numbers of cooling and heating degree days. The method involved a statistical analysis of historical mean daily temperature observed in 19 major Polish cities over the 1968-2018 period. The air temperature change impact on renewable energy sector in Poland, by affecting the heating and cooling demand, the electrical load and the renewables working conditions both, on supply and demand side. The analysis reports that the mean daily temperature in all major polish cities is exhibiting a statistically significant increasing trend, up to 0.52 °C/decade. The observed increase in air temperature reduces the heating demand in Poland, beneficially for the environment and renewable supply. Increasing cooling needs in summer raises the energy consumption and indoor thermal stress. The climate warming affects the operation conditions, energy source, driving force, capacity and efficiency of renewable energy sources. The investigated changes were favourable and unfavourable depending on the renewable technology and operation mode, and were stronger on the demand side than on the supply side.
RESUMEN
Renewable energy sources have shown remarkable growth in recent times in terms of their contribution to sustainable societies. However, integrating them into the national power grids is usually hindered because of their weather-dependent nature and variability. The combination of different sources to profit from their beneficial complementarity has often been proposed as a partial solution to overcome these issues. Thus, efficient planning for optimizing the exploitation of these energy resources requires different types of decision support tools. A mathematical index for assessing energetic complementarity between multiple energy sources constitutes an important tool for this purpose, allowing a comparison of complementarity between existing facilities at different planning stages and also allowing a dynamic assessment of complementarity between variable energy sources throughout the operation, assisting in the dispatch of power supplies. This article presents a method for quantifying and spatially representing the total temporal energetic complementarity between three different variable renewable sources, through an index created from correlation coefficients and compromise programming. The method is employed to study the complementarity of wind speed, solar radiation and surface runoff on a monthly scale using continental Colombia as a case study during the year of 2015.â¢This paper describes a method for quantifying and spatially representing energetic complementarity between three renewable energy sources.â¢The method quantifies energetic complementarity by combining known metrics: correlations and compromise programming.â¢The proposed index for energetic complementarity assessment is sensitive to the time scale adopted.