RESUMEN
This work evaluated the chemical composition and mycotoxin incidence in corn silage from 5 Brazilian dairy-producing regions: Castro, in central-eastern Paraná State (n=32); Toledo, in southwestern Paraná (n=20); southeastern Goiás (n=14); southern Minas Gerais (n=23); and western Santa Catarina (n=20). On each dairy farm, an infrared thermography camera was used to identify 3 sampling sites that exhibited the highest temperature, a moderate temperature, and the lowest temperature on the silo face, and 1 sample was collected from each site. The chemical composition and concentrations of mycotoxins were evaluated, including the levels of aflatoxins B1, B2, G1, and G2; zearalenone; ochratoxin A; deoxynivalenol; and fumonisins B1 and B2. The corn silage showed a highly variable chemical composition, containing, on average, 7.1±1.1%, 52.5±5.4%, and 65.2±3.6% crude protein, neutral detergent fiber, and total digestible nutrients, respectively. Mycotoxins were found in more than 91% of the samples, with zearalenone being the most prevalent (72.8%). All samples from the Castro region contained zearalenone at a high average concentration (334±374µg/kg), even in well-preserved silage. The incidence of aflatoxin B1 was low (0.92%). Silage temperature and the presence of mycotoxins were not correlated; similarly, differences were not observed in the concentration or incidence of mycotoxins across silage locations with different temperatures. Infrared thermography is an accurate tool for identifying heat sites, but temperature cannot be used to predict the chemical composition or the incidence of mycotoxins that have been analyzed, within the silage. The pre-harvest phase of the ensiling process is most likely the main source of mycotoxins in silage.
Asunto(s)
Rayos Infrarrojos , Micotoxinas/análisis , Ensilaje/microbiología , Termografía , Aflatoxina B1/análisis , Brasil , Industria Lechera , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Fumonisinas/análisis , Ocratoxinas/análisis , Ensilaje/análisis , Encuestas y Cuestionarios , Tricotecenos/análisis , Zea mays/química , Zearalenona/análisisRESUMEN
The objective of this study was to determine whether replacing the physically effective neutral detergent fiber (peNDF) of corn silage with sugarcane silage peNDF would affect performance in dairy cows. Twenty-four late-lactation Holstein cows were assigned to eight 3 × 3 Latin squares with 21-d periods. The dietary treatments were (1) 25% peNDF of corn silage, (2) 25% peNDF of sugarcane silage, and (3) 12.5% peNDF of corn silage + 12.5% peNDF of sugarcane silage. The physical effectiveness factors (pef) were assumed to be 1 for corn silage and 1.2 for sugarcane silage, as measured previously by bioassay. Thus, peNDF was calculated as neutral detergent fiber (NDF) × pef. The concentrate ingredients were finely ground corn, soybean meal, pelleted citrus pulp, and mineral-vitamin premix. Dry matter intake (22.5 ± 0.63 kg/d), 3.5% fat-corrected milk yield (28.8 ± 1.13 kg/d), milk composition (fat, protein, lactose, urea, casein, free fatty acids, and somatic cell count), and blood metabolites (glucose, insulin, and nonesterified fatty acids) were unaffected by the treatments. The time spent eating, ruminating, or chewing was also similar among the diets, as was particle-sorting behavior. By contrast, chewing per kilogram of forage NDF intake was higher for the sugarcane silage (137 min/kg) than the corn silage diet (116 min/kg), indicating the greater physical effectiveness of sugarcane fiber. Based on chewing behavior (min/d), the estimated pef of sugarcane silage NDF were 1.28 in the corn silage plus sugarcane silage diet and 1.29 in the sugarcane silage diet. Formulating dairy rations of equal peNDF content allows similar performance if corn and sugarcane silages are exchanged.