Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8189, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294164

RESUMEN

The development of hydrogen technologies is at the heart of a green economy. As prerequisite for implementation of hydrogen storage, active and stable catalysts for (de)hydrogenation reactions are needed. So far, the use of precious metals associated with expensive costs dominates in this area. Herein, we present a new class of lower-cost Co-based catalysts (Co-SAs/NPs@NC) in which highly distributed single-metal sites are synergistically combined with small defined nanoparticles allowing efficient formic acid dehydrogenation. The optimal material with atomically dispersed CoN2C2 units and encapsulated 7-8 nm nanoparticles achieves an excellent gas yield of 1403.8 mL·g-1·h-1 using propylene carbonate as solvent, with no activity loss after 5 cycles, which is 15 times higher than that of the commercial Pd/C. In situ analytic experiments show that Co-SAs/NPs@NC enhances the adsorption and activation of the key intermediate monodentate HCOO*, thereby facilitating the following C-H bond breaking, compared to related single metal atom and nanoparticle catalysts. Theoretical calculations show that the integration of cobalt nanoparticles elevates the d-band center of the Co single atoms as the active center, which consequently enhances the coupling of the carbonyl O of the HCOO* intermediate to the Co centers, thereby lowering the energy barrier.

2.
Nat Commun ; 15(1): 7268, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179597

RESUMEN

Liquid (organic) hydrogen carriers ([18H]-dibenzyltoluene, MeOH, formic acid, etc.) form a toolbox for the storage and transport of green hydrogen, which is crucial for the implementation of renewable energy technologies. Simple organic salts have been scarcely investigated for this purpose, despite many advantages such as low cost and minor toxicity, as well as easy handling. Here, we present a potassium formate/potassium bicarbonate hydrogen storage and release energy system, that is applicable and shows high stability (6 months). Utilizing ppm amounts of the molecularly defined Ru-5 complex, hydrogen release rates of up to 9.3 L h-1 were achieved. The same catalyst system promoted the hydrogenation of KHCO3 to HCOOK with a TON of 9650. In this way, combined hydrogen storage-release cycles can be performed for 40 times.

3.
Angew Chem Int Ed Engl ; 63(16): e202319313, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324458

RESUMEN

Novel concepts to utilize carbon dioxide are required to reach a circular carbon economy and minimize environmental issues. To achieve these goals, photo-, electro-, thermal-, and biocatalysis are key tools to realize this, preferentially in aqueous solutions. Nevertheless, catalytic systems that operate efficiently in water are scarce. Here, we present a general strategy for the identification of enzymes suitable for CO2 reduction based on structural analysis for potential carbon dioxide binding sites and subsequent mutations. We discovered that the phenolic acid decarboxylase from Bacillus subtilis (BsPAD) promotes the aqueous photocatalytic CO2 reduction selectively to carbon monoxide in the presence of a ruthenium photosensitizer and sodium ascorbate. With engineered variants of BsPAD, TONs of up to 978 and selectivities of up to 93 % (favoring the desired CO over H2 generation) were achieved. Mutating the active site region of BsPAD further improved turnover numbers for CO generation. This also revealed that electron transfer is rate-limiting and occurs via multistep tunneling. The generality of this approach was proven by using eight other enzymes, all showing the desired activity underlining that a range of proteins is capable of photocatalytic CO2 reduction.


Asunto(s)
Ácido Ascórbico , Dióxido de Carbono , Bacillus subtilis , Biocatálisis , Monóxido de Carbono , Agua
4.
Dalton Trans ; 53(9): 4147-4153, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38318770

RESUMEN

A new method for the generation of benzyl radicals from terminal aromatic alkynes has been developed, which allows the direct cross coupling with acrylate derivatives. Our additive-free protocol employs air-stable diamino Mo3S4 cubane-type cluster catalysts in the presence of hydrogen. A sulfur-centered cluster catalysis mechanism for benzyl radical formation is proposed based on catalytic and stoichiometric experiments. The process starts with the cluster hydrogen activation to form a bis(hydrosulfido) [Mo3(µ3-S)(µ-S)(µ-SH)2Cl3(dmen)3]+ intermediate. The reaction of various aromatic terminal alkynes containing different functionalities with a series of acrylates affords the corresponding Giese-type radical addition products.

5.
Angew Chem Int Ed Engl ; 62(43): e202313099, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37694769

RESUMEN

The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu-N-C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal -1 ⋅ h-1 ) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu-N-C promoted formic acid dehydrogenation follows the so-called formate pathway with the C-H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.

6.
Nat Commun ; 14(1): 3726, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349304

RESUMEN

The development of alternative clean energy carriers is a key challenge for our society. Carbon-based hydrogen storage materials are well-suited to undergo reversible (de)hydrogenation reactions and the development of catalysts for the individual process steps is crucial. In the current state, noble metal-based catalysts still dominate this field. Here, a system for partially reversible and carbon-neutral hydrogen storage and release is reported. It is based on the dual-functional roles of formamides and uses a small molecule Fe-pincer complex as the catalyst, showing good stability and reusability with high productivity. Starting from formamides, quantitative production of CO-free hydrogen is achieved at high selectivity ( > 99.9%). This system works at modest temperatures of 90 °C, which can be easily supplied by the waste heat from e.g., proton-exchange membrane fuel cells. Employing such system, we achieve >70% H2 evolution efficiency and >99% H2 selectivity in 10 charge-discharge cycles, avoiding undesired carbon emission between cycles.


Asunto(s)
Formamidas , Hidrógeno , Protones , Hidrogenación , Catálisis
7.
IUCrdata ; 8(Pt 4): x230346, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37151201

RESUMEN

The binuclear title compound, [Fe2(C28H48N2O2Si4)(CO)6], consists of two central iron(0) atoms, each of them surrounded by a cyclo-penta-dienone moiety and three carbonyl ligands in a three-legged piano-stool shape. Furthermore, the bis-(cyclo-penta-dienone) ligand acts as a bridge between the two metal atoms.

8.
Angew Chem Int Ed Engl ; 62(6): e202214706, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468459

RESUMEN

Diesters are of fundamental importance in the chemical industry and are used for many applications, e.g. as plasticizers, surfactants, emulsifiers, and lubricants. Herein, we present a straightforward and efficient method for the selective synthesis of diesters via palladium-catalyzed direct carbonylation of di- or polyols with readily available alkenes. Key-to-success is the use of a specific palladium catalyst with the "built-in-base" ligand L16 providing esterification of all alcohols and a high n/iso ratio. The synthesized diesters were evaluated as potential plasticizers in PVC films by measuring the glass transition temperature (Tg ) via differential scanning calorimetry (DSC).

9.
ACS Cent Sci ; 8(10): 1457-1463, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36313168

RESUMEN

We report here a feasible hydrogen storage and release process by interconversion of readily available (bi)carbonate and formate salts in the presence of naturally occurring α-amino acids. These transformations are of interest for the concept of a circular carbon economy. The use of inorganic carbonate salts for hydrogen storage and release is also described for the first time. Hydrogenation of these substrates proceeds with high formate yields in the presence of specific manganese pincer catalysts and glutamic acid. Based on this, cyclic hydrogen storage and release processes with carbonate salts succeed with good H2 yields.

10.
ChemSusChem ; 15(23): e202201502, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36164963

RESUMEN

A series of alkyl ammonium (or imidazolium) based ionic liquids was tested as novel and potentially green absorbent for CO2 capture and utilization. By exploiting various amino acids as counter ions for ionic liquids, CO2 capture and hydrogenation to formate occur with high activity and excellent productivity utilizing arginine. The reaction was easily scalable without any significant drop in formate production, and the catalyst was reused for five consecutive runs leading to an overall TON of 12,741 for the formation of formate salt.


Asunto(s)
Líquidos Iónicos , Aminoácidos , Dióxido de Carbono
11.
Nat Commun ; 13(1): 4432, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908063

RESUMEN

The rise of CO2 in atmosphere is considered as the major reason for global warming. Therefore, CO2 utilization has attracted more and more attention. Among those, using CO2 as C1-feedstock for the chemical industry provides a solution. Here we show a two-step cascade process to perform catalytic carbonylations of olefins, alkynes, and aryl halides utilizing CO2 and H2. For the first step, a novel heterogeneous copper 10Cu@SiO2-PHM catalyst exhibits high selectivity (≥98%) and decent conversion (27%) in generating CO from reducing CO2 with H2. The generated CO is directly utilized without further purification in industrially important carbonylation reactions: hydroformylation, alkoxycarbonylation, and aminocarbonylation. Notably, various aldehydes, (unsaturated) esters and amides are obtained in high yields and chemo-/regio-selectivities at low temperature under ambient pressure. Our approach is of interest for continuous syntheses in drug discovery and organic synthesis to produce building blocks on reasonable scale utilizing CO2.

12.
JACS Au ; 2(5): 1020-1031, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35647600

RESUMEN

Recent developments of CO2 capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO2/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.

13.
Chem Sci ; 12(39): 13101-13119, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745541

RESUMEN

Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed.

14.
Chem Sci ; 12(17): 6020-6024, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33995998

RESUMEN

Herein, we report a novel amino acid based reaction system for CO2 capture and utilization (CCU) to produce formates in the presence of the naturally occurring amino acid l-lysine. Utilizing a specific ruthenium-based catalyst system, hydrogenation of absorbed carbon dioxide occurs with high activity and excellent productivity. Noteworthy, following the CCU concept, CO2 can be captured from ambient air in the form of carbamates and converted directly to formates in one-pot (TON > 50 000). This protocol opens new potential for transforming captured CO2 from ambient air to C1-related products.

15.
Chemphyschem ; 22(7): 693-700, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33410580

RESUMEN

Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.

16.
Chem Sci ; 12(47): 15772-15774, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-35003611

RESUMEN

[This corrects the article DOI: 10.1039/D1SC04181A.].

17.
ACS Appl Mater Interfaces ; 12(48): 53910-53920, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33207876

RESUMEN

Facet-engineered monoclinic scheelite BiVO4 particles decorated with various cocatalysts were successfully synthesized by selective sunlight photodeposition of metal or metal oxy(hydroxide) nanoparticles onto the facets of truncated bipyramidal BiVO4 monoclinic crystals coexposing {010} and {110} facets. X-ray photoelectron spectroscopy, scanning electron microscopy, and scanning Auger microscopy revealed that metallic silver (Ag) and cobalt (oxy)hydroxide (CoOx(OH)y) particles were selectively deposited onto the {010} and {110} facets, respectively, regardless of the cocatalyst amount. By contrast, the nickel (oxy)hydroxide (NiOx(OH)y) photodeposition depends on the nickel precursor amount with an unprecedented selectivity for 0.1 wt % NiOx(OH)y/BiVO4 with a preferential deposition onto the {010} facets and the edges between the {110} facets. Moreover, these noble metal-free heterostructures led to remarkable photocatalytic properties for rhodamine B photodecomposition and sacrificial water oxidation reactions. For instance, 0.2 wt % CoOx(OH)y/BiVO4 led to one of the highest oxygen evolution rates, i.e., 1538 µmol h-1 g-1, ever described which is ten times higher than that found for bare BiVO4. The selective deposition of cobalt (oxy)hydroxide species onto the more electron-deficient facet of truncated bipyramidal monoclinic BiVO4 particles favors photogenerated charge carrier separation and therefore plays a key role for efficient photochemical oxygen evolution.

18.
Angew Chem Int Ed Engl ; 59(37): 15849-15854, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32458555

RESUMEN

Metal-organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field-scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoII Nx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation.

19.
Chemistry ; 26(27): 6050-6055, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-31985105

RESUMEN

Ruthenium PNP pincer complexes bearing supplementary cyclometalated C,N-bound ligands have been prepared and fully characterized for the first time. By replacing CO and H- as ancillary ligands in such complexes, additional electronic and steric modifications of this topical class of catalysts are possible. The advantages of the new catalysts are demonstrated in the general α-alkylation of ketones with alcohols following a hydrogen autotransfer protocol. Herein, various aliphatic and benzylic alcohols were applied as green alkylating agents for ketones bearing aromatic, heteroaromatic or aliphatic substituents as well as cyclic ones. Mechanistic investigations revealed that during catalysis, Ru carboxylate complexes are predominantly formed whereas neither the PNP nor the CN ligand are released from the catalyst in significant amounts.

20.
Chem Commun (Camb) ; 55(34): 4969-4972, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30968097

RESUMEN

Nickel-based nanocatalysts were used in acceptorless, reversible dehydrogenation and hydrogenation reactions of N-heterocycles. Both processes were realized in the same solvent using a single catalyst, without isolation of products and workup, which makes it attractive for hydrogen storage purposes. This concept has been demonstrated in a continuous hydrogenation/dehydrogenation sequence of quinaldine with negligible loss in activity of the nickel catalyst after three hydrogen storage cycles. The scope of acceptorless dehydrogenation has been explored and control experiments suggest that hydrogen liberation is initiated via amine dehydrogenation and supports the direct alkane dehydrogenation from the partially oxidized N-heterocycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA