Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(12): e2307059, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946687

RESUMEN

The state-of-the-art iridium and ruthenium oxides-based materials are best known for high efficiency and stability in acidic oxygen evolution reaction (OER). However, the development of economically feasible catalysts for water-splitting technologies is challenging by the requirements of low overpotential, high stability, and resistance of catalysts to dissolution during the acidic oxygen evolution reaction . Herein, an organometallic core-shell heterostructure composed of a carbon nanotube core (CNT) and bismuth telluride (Bi2Te3) shell (denoted as nC-Bi2Te3) is designed and use it as a catalyst for the acidic OER. The proposed catalyst achieves an ultralow overpotential of 160 mV at 10 mA cm-2 (geometrical), thereby outperforming most of the state-of-the-art precious-metal-based catalysts. The low Tafel slope of 30 mV dec-1 and charge transfer resistance (RCT) of 1.5 Ω demonstrate its excellent electrocatalytic activity. The morphological and chemical compositions of nC-Bi2Te3 enable the generation of ─OH functional group in the Bi─Te sections formed via a ligand support, which enhances the absorption capacity of H+ ions and increases the intrinsic catalytic activity. The presented insights regarding the material composition-structure relationship can help expand the application scope of high-performance catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA