Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharmaceutica Sinica B ; (6): 775-786, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-971730

RESUMEN

The typical hallmark of tumor evolution is metabolic dysregulation. In addition to secreting immunoregulatory metabolites, tumor cells and various immune cells display different metabolic pathways and plasticity. Harnessing the metabolic differences to reduce the tumor and immunosuppressive cells while enhancing the activity of positive immunoregulatory cells is a promising strategy. We develop a nanoplatform (CLCeMOF) based on cerium metal-organic framework (CeMOF) by lactate oxidase (LOX) modification and glutaminase inhibitor (CB839) loading. The cascade catalytic reactions induced by CLCeMOF generate reactive oxygen species "storm" to elicit immune responses. Meanwhile, LOX-mediated metabolite lactate exhaustion relieves the immunosuppressive tumor microenvironment, preparing the ground for intracellular regulation. Most noticeably, the immunometabolic checkpoint blockade therapy, as a result of glutamine antagonism, is exploited for overall cell mobilization. It is found that CLCeMOF inhibited glutamine metabolism-dependent cells (tumor cells, immunosuppressive cells, etc.), increased infiltration of dendritic cells, and especially reprogrammed CD8+ T lymphocytes with considerable metabolic flexibility toward a highly activated, long-lived, and memory-like phenotype. Such an idea intervenes both metabolite (lactate) and cellular metabolic pathway, which essentially alters overall cell fates toward the desired situation. Collectively, the metabolic intervention strategy is bound to break the evolutionary adaptability of tumors for reinforced immunotherapy.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-449680

RESUMEN

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. Here we showed that SARS-CoV-2-triggeed MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation alterred various signaling pathways in alveolar epithelial cells, particularly, led to the production of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=135 SRC="FIGDIR/small/449680v1_ufig1.gif" ALT="Figure 1"> View larger version (29K): org.highwire.dtl.DTLVardef@899996org.highwire.dtl.DTLVardef@1c26c0eorg.highwire.dtl.DTLVardef@1442cdcorg.highwire.dtl.DTLVardef@dd4204_HPS_FORMAT_FIGEXP M_FIG C_FIG In BriefSARS-CoV-2 triggers an immediate mast cell (MC) degranulation, which initiates the alveolar epithelial inflammation and disrupts the tight junction. MC stabilizers that block degranulation reduce virus-induced lung inflammation and injury. HighlightsO_LIThe binding of RBD of Spike protein of SARS-CoV-2-to ACE2 receptor protein triggers an immediate MC degranulation C_LIO_LIMC degranulation induces transcriptomic changes include an upregulated inflammatory signaling and a downregulated cell-junction signaling C_LIO_LIMC degranulation leads to alveolar epithelial inflammation and disruption of tight junctions C_LIO_LIMC stabilizer that inhibits degranulation reduces SARS-CoV-2-induced lung inflammation and injury in vivo C_LI

3.
Acta Pharmaceutica Sinica ; (12): 1260-4, 2010.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-382499

RESUMEN

Tepoxalin is a potent inhibitor of both the cyclooxygenase and lipoxygenase pathways of the arachidonic acid cascade, as well as a potent anti-inflammatory and control-pain (postoperation, arthritis et. al.) agent. The new method about the use of novel synthesis reagents and the first using ionic liquid as reactive solvent to synthesize tepoxalin were presented in this paper. The ionic liquid can be easily recycled and reused for several runs efficiently. The analgesic activity of tepoxalin was detected by acetic acid test on mice. The analysis of variance showed that oral administration of tepoxalin could significantly inhibit the number of writhing response within 1 hour and prolong the latent time in a dose dependent manner as compared with CMC control group (P < 0.05). At the same time, tepoxalin had the same analgesic activity as diclofenac sodium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA