Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1321308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293626

RESUMEN

Genetic gain estimation in a breeding program provides an opportunity to monitor breeding efficiency and genetic progress over a specific period. The present study was conducted to (i) assess the genetic gains in grain yield of the early maturing maize hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) Southern African breeding program during the period 2000-2018 and (ii) identify key agronomic traits contributing to the yield gains under various management conditions. Seventy-two early maturing hybrids developed by CIMMYT and three commercial checks were assessed under stress and non-stress conditions across 68 environments in seven eastern and southern African countries through the regional on-station trials. Genetic gain was estimated as the slope of the regression of grain yield and other traits against the year of first testing of the hybrid in the regional trial. The results showed highly significant (p< 0.01) annual grain yield gains of 118, 63, 46, and 61 kg ha-1 year-1 under optimum, low N, managed drought, and random stress conditions, respectively. The gains in grain yield realized in this study under both stress and non-stress conditions were associated with improvements in certain agronomic traits and resistance to major maize diseases. The findings of this study clearly demonstrate the significant progress made in developing productive and multiple stress-tolerant maize hybrids together with other desirable agronomic attributes in CIMMYT's hybrid breeding program.

2.
Euphytica ; 213: 261, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-33364631

RESUMEN

Maize (Zea mays L.) is an important source of carbohydrates and protein in the diet in sub-Saharan Africa. The objectives of this study were to (i) estimate general (GCA) and specific combining abilities (SCA) of 13 new quality protein maize (QPM) lines in a diallel under stress and non-stress conditions, (ii) compare observed and predicted performance of QPM hybrids, (iii) characterize genetic diversity among the 13 QPM lines using single nucleotide polymorphism (SNP) markers and assess the relationship between genetic distance and hybrid performance, and (iv) assess diversity and population structure in 116 new QPM inbred lines as compared to eight older tropical QPM lines and 15 non-QPM lines. The GCA and SCA effects were significant for most traits under optimal conditions, indicating that both additive and non-additive genetic effects were important for inheritance of the traits. Additive genetic effects appeared to govern inheritance of most traits under optimal conditions and across environments. Non-additive genetic effects were more important for inheritance of grain yield but additive effects controlled most agronomic traits under drought stress conditions. Inbred lines CKL08056, CKL07292, and CKL07001 had desirable GCA effects for grain yield across drought stress and non-stress conditions. Prediction efficiency for grain yield was highest under optimal conditions. The classification of 139 inbred lines with 95 SNPs generated six clusters, four of which contained 10 or fewer lines, and 16 lines of mixed co-ancestry. There was good agreement between Neighbor Joining dendrogram and Structure classification. The QPM lines used in the diallel were nearly uniformly spread throughout the dendrogram. There was no relationship between genetic distance and grain yield in either the optimal or stressed environments in this study. The genetic diversity in mid-altitude maize germplasm is ample, and the addition of the QPM germplasm did not increase it measurably.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA