Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22277368

RESUMEN

Antibodies can have beneficial, neutral, or harmful effects so resolving an antibody repertoire to its target epitopes may explain heterogeneity in susceptibility to infectious disease. However, the three-dimensional nature of antibody-epitope interactions limits discovery of important targets. We describe and experimentally validated a computational method and synthetic biology pipeline for identifying structurally stable and functionally important epitopes from the SARS-CoV-2 proteome. We identify patterns of epitope-binding antibodies associated with immunopathology, including a non-isotype switching IgM response to a membrane protein epitope which is the strongest single immunological feature associated with severe COVID-19 to date (adjusted OR 72.14, 95% CI: 9.71 - 1300.15). We suggest the mechanism is T independent B cell activation and identify persistence (> 1 year) of this response in individuals with long COVID particularly affected by fatigue and depression. These findings highlight a previously unrecognized coronavirus host:pathogen interaction which is potentially an upstream event in severe immunopathology and this may have implications for the ongoing medical and public health response to the pandemic. The membrane protein epitope is a promising vaccine and monoclonal antibody target which may complement anti-spike vaccination or monoclonal antibody therapies broadening immunological protection. One-Sentence SummaryUsing a novel B cell epitope discovery method we have identified antibody signatures strongly associated with SARS-CoV-2 immunopathology and suggest the membrane protein is a pathological T independent antigen.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265497

RESUMEN

1.In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262965

RESUMEN

Critical illness in COVID-19 is caused by inflammatory lung injury, mediated by the host immune system. We and others have shown that host genetic variation influences the development of illness requiring critical care1 or hospitalisation2;3;4 following SARS-Co-V2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study recruits critically-ill cases and compares their genomes with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing and statistical fine mapping in 7,491 critically-ill cases compared with 48,400 population controls to discover and replicate 22 independent variants that significantly predispose to life-threatening COVID-19. We identify 15 new independent associations with critical COVID-19, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating expression of multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. We show that comparison between critically-ill cases and population controls is highly efficient for genetic association analysis and enables detection of therapeutically-relevant mechanisms of disease. Therapeutic predictions arising from these findings require testing in clinical trials.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20200048

RESUMEN

The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs1 and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases.2 Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19.3 GenOMICC (Genetics Of Mortality In Critical Care, genomicc.org) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2244 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Ancestry-matched controls were drawn from the UK Biobank population study and results were confirmed in GWAS comparisons with two other population control groups: the 100,000 genomes project and Generation Scotland. We identify and replicate three novel genome-wide significant associations, at chr19p13.3 (rs2109069, p = 3.98 x 10-12), within the gene encoding dipeptidyl peptidase 9 (DPP9), at chr12q24.13 (rs10735079, p =1.65 x 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), and at chr21q22.1 (rs2236757, p = 4.99 x 10-8) in the interferon receptor gene IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, p = 4.77 x 10-30). We identify potential targets for repurposing of licensed medications. Using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease. Transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20080408

RESUMEN

The SARS-CoV-2 pandemic has resulted in widespread morbidity and mortality globally. ACE2 is a receptor for SARS-CoV-2 and differences in expression may affect susceptibility to COVID-19. Using HCV-infected liver tissue from 195 individuals, we discovered that among genes negatively correlated with ACE2, interferon signalling pathways were highly enriched and observed down-regulation of ACE2 after interferon-alpha treatment. Negative correlation was also found in the gastrointestinal tract and in lung tissue from a murine model of SARS-CoV-1 infection suggesting conserved regulation of ACE2 across tissue and species. Performing a genome-wide eQTL analysis, we discovered that polymorphisms in the interferon lambda (IFNL) region are associated with ACE2 expression. Increased ACE2 expression in the liver was also associated with age and presence of cirrhosis. Polymorphisms in the IFNL region may impact not only antiviral responses but also ACE2 with potential consequences for clinical outcomes in distinct ethnic groups and with implications for therapeutic interventions.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20066407

RESUMEN

BackgroundThe COVID-19 pandemic caused >1 million infections during January-March 2020. There is an urgent need for reliable antibody detection approaches to support diagnosis, vaccine development, safe release of individuals from quarantine, and population lock-down exit strategies. We set out to evaluate the performance of ELISA and lateral flow immunoassay (LFIA) devices. MethodsWe tested plasma for COVID (SARS-CoV-2) IgM and IgG antibodies by ELISA and using nine different LFIA devices. We used a panel of plasma samples from individuals who have had confirmed COVID infection based on a PCR result (n=40), and pre-pandemic negative control samples banked in the UK prior to December-2019 (n=142). ResultsELISA detected IgM or IgG in 34/40 individuals with a confirmed history of COVID infection (sensitivity 85%, 95%CI 70-94%), vs. 0/50 pre-pandemic controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 COVID-positive individuals tested [≥]10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but remained above the detection threshold. Point estimates for the sensitivity of LFIA devices ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 93-100% respectively. Within the limits of the study size, the performance of most LFIA devices was similar. ConclusionsCurrently available commercial LFIA devices do not perform sufficiently well for individual patient applications. However, ELISA can be calibrated to be specific for detecting and quantifying SARS-CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following first symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA