Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Regen Biomater ; 11: rbae061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948337

RESUMEN

In recent years, bridging repair has emerged as an effective approach for the treatment of massive rotator cuff tears (MRCTs). The objective of this study was to develop a composite patch that combines superior mechanical strength and biocompatibility and evaluate its potential for enhancing the outcomes of bridging repair for MRCTs. The composite patch, referred to as the PET-matrix patch (PM), was fabricated by immersing a plain-woven PET patch in decellularized matrix gel and utilizing the freeze-drying technique. The results demonstrated that the PM has reliable mechanical properties, with a maximum failure load of up to 480 N. The decellularized matrix sponge (DMS), present on the surface of the PM, displayed a loose and porous structure, with an average pore size of 62.51 µm and a porosity of 95.43%. In vitro experiments showed significant elongation of tenocytes on the DMS, with cells spanning across multiple pores and extending multiple protrusions as observed on SEM images. In contrast, tenocytes on the PET patch appeared smaller in size and lacked significant elongation. Additionally, the DMS facilitated the proliferation, migration and differentiation of tenocytes. In a rabbit model of chronic MRCTs, the PM group showed superior outcomes compared to the PET group at 4, 8 and 12 weeks after bridging repair. The PM group displayed significantly higher tendon maturing score, larger collagen diameter in the regenerated tendon and improved tendon-to-bone healing scores compared to the PET group (P < 0.05). Moreover, the maximum failure load of the tendon-bone complex in the PM group was significantly higher than that in the PET group (P < 0.05). In summary, the PM possesses reliable mechanical properties and excellent cytocompatibility, which can significantly improve the outcomes of bridging repair for chronic MRCTs in rabbits. Therefore, it holds great potential for clinical applications.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38584973

RESUMEN

Background: Bridging repair has emerged as a promising and reliable treatment strategy for the massive rotator cuff tears (MRCTs). However, there remains a lack of evidence on which bridging graft provides the better repair results, and a dearth of animal studies comparing bridging repairs with different grafts. The purpose of this study was to evaluate the histological and biomechanical outcomes of commonly used grafts (autologous fascia lata (FL), acellular dermal matrix graft (ADM), and polyethylene terephthalate (PET) patch). Methods: A total of 66 male New Zealand White Rabbits were used to mimic a model of unilateral chronic MRCTs. The rabbits were randomly divided into three groups: (1) FL group, which underwent bridging repair with autologous FL; (2) ADM group, which underwent bridging with ADM; and (3) PET group, which underwent bridging with PET patch. Tissue samples were collected and subjected to histological analysis using Hematoxylin and eosin, Picrosirius red, Safranin O/Fast green staining, and Immunostaining. Collagen diameter and fibril density in the regenerated tendon was analyzed with transmission electron microscopy (TEM). Additionally, biomechanical tests were performed at 6 and 12 weeks after repair. Results: The regenerated tendon successfully reattached to the footprint in all experimental groups. At 6 weeks after repair, the FL group had a significantly higher Modified Tendon Histological Evaluation (MTHE) score at the regenerated tendon than the PET group (13.2 ± 1.64 vs 9.6 ± 1.95, respectively; P = 0.038). The picrosirius red staining results showed that the FL group had a significantly higher type I collagen content than the ADM and PET groups at 6 weeks, and this difference was sustained with the PET group at 12 weeks (P < 0.05). Immunofluorescence analysis against CD68 indicated that the number of macrophage infiltrates was significantly lower in the FL group than in the ADM and PET groups (P < 0.05). At 12 weeks after repair, the area of Safranin O metachromasia was significant greater in ADM group than that in the PET group (P = 0.01). The FL group showed a significantly larger collagen diameter in the regenerated tendon than the PET group (P < 0.05), as indicated by TEM results. Furthermore, the FL group resulted in a greater failure load (at 6 weeks; 118.40 ± 16.70 N vs 93.75 ± 9.06 N, respectively; P = 0.019) and elastic modulus (at 6 weeks; 12.28 ± 1.94 MPa vs 9.58 ± 0.79 MPa, respectively; P = 0.024; at 12 weeks; 15.02 ± 2.36 MPa vs 11.63 ± 1.20 MPa, respectively; P = 0.032) than the ADM group. Conclusions: This study demonstrated that all three grafts could successfully bridging chronic MRCTs in a rabbit model. However, autologous FL promoted tendon regeneration and maturation, and enhanced the tensile properties of the tendon-to-bone complex when compared with ADM and PET grafts.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38204486

RESUMEN

Surgical repair or reconstruction of the lateral ligaments for patients with chronic ankle instability (CAI) could, logically, restore the proprioception of ankle through retensing receptors. To validate this hypothesis, seven databases were systematically searched, and thirteen studies comprising a total of 347 patients with CAI were included. Although five studies reported improved proprioceptive outcomes after surgeries, the other five studies with between-limb/group comparisons reported residual deficits at final follow-up, which does not consistently support proprioceptive recovery after existing surgical restabilization for CAI. More controlled studies are needed to provide evidence-based protocols to improve proprioceptive recovery after ankle restabilization for CAI.

4.
Sci Rep ; 13(1): 9330, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291167

RESUMEN

A growing of evidence has showed that patients with osteoarthritis (OA) had a higher coronavirus 2019 (COVID-19) infection rate and a poorer prognosis after infected it. Additionally, scientists have also discovered that COVID-19 infection might cause pathological changes in the musculoskeletal system. However, its mechanism is still not fully elucidated. This study aims to further explore the sharing pathogenesis of patients with both OA and COVID-19 infection and find candidate drugs. Gene expression profiles of OA (GSE51588) and COVID-19 (GSE147507) were obtained from the Gene Expression Omnibus (GEO) database. The common differentially expressed genes (DEGs) for both OA and COVID-19 were identified and several hub genes were extracted from them. Then gene and pathway enrichment analysis of the DEGs were performed; protein-protein interaction (PPI) network, transcription factor (TF)-gene regulatory network, TF-miRNA regulatory network and gene-disease association network were constructed based on the DEGs and hub genes. Finally, we predicted several candidate molecular drugs related to hub genes using DSigDB database. The receiver operating characteristic curve (ROC) was applied to evaluate the accuracy of hub genes in the diagnosis of both OA and COVID-19. In total, 83 overlapping DEGs were identified and selected for subsequent analyses. CXCR4, EGR2, ENO1, FASN, GATA6, HIST1H3H, HIST1H4H, HIST1H4I, HIST1H4K, MTHFD2, PDK1, TUBA4A, TUBB1 and TUBB3 were screened out as hub genes, and some showed preferable values as diagnostic markers for both OA and COVID-19. Several candidate molecular drugs, which are related to the hug genes, were identified. These sharing pathways and hub genes may provide new ideas for further mechanistic studies and guide more individual-based effective treatments for OA patients with COVID-19 infection.


Asunto(s)
COVID-19 , Osteoartritis , Humanos , COVID-19/genética , Redes Reguladoras de Genes , Biología Computacional , Osteoartritis/genética , Osteoartritis/patología , Factores de Transcripción/metabolismo , Bases de Datos Genéticas , Perfilación de la Expresión Génica
5.
Life Sci ; 311(Pt B): 121186, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375573

RESUMEN

AIMS: The dedifferentiation of tubular epithelial cells has been identified as an important trigger of renal fibrosis. The Hippo pathway is a crucial regulator of cell proliferation and differentiation. In this study, we determined the role of Hippo proteins in tubular dedifferentiation in diabetic nephropathy (DN). MAIN METHODS: In this study, we measured dedifferentiation markers and Hippo proteins in db/db mice and high glucose treated tubular epithelial cells. Then, verteporfin and knockdown of large tumor suppressor kinase (LATS) 1 and 2 were performed to uncover therapeutic targets for DN. KEY FINDINGS: Here, we found dedifferentiation and upregulated Hippo proteins in tubular epithelial cells in DN model both in vivo and in vitro. Both verteporfin and LATS knockdown could inhibit the tubular mesenchymal transition, but verteporfin showed broad inhibitory effect on Hippo proteins, especially nuclear YAP, and exacerbated podocyte loss of DN. LATS2 knockdown did not reverse the tubular E-Cadherin loss while it also induced podocyte apoptosis. Overall, intervention of LATS1 inhibited tubular dedifferentiation efficiently without affecting YAP and bringing podocyte apoptosis. Further mechanistic investigations revealed that the TGF-ß1/Smad, instead of the YAP-TEAD-CTGF signaling, might be the underlying pathway through which verteporfin and LATS1 engaged in the tubular dedifferentiation. SIGNIFICANCE: In conclusion, verteporfin is not a suitable treatment for DN owing to evitable podocyte loss and apoptosis. Targeting LATS1 is a better choice worthy of further investigation for DN therapy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Ratones , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Verteporfina/farmacología , Verteporfina/uso terapéutico
6.
Kidney Int ; 102(1): 121-135, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483522

RESUMEN

Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Doxorrubicina , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Hipertrofia , Mamíferos/metabolismo , Ratones , Fosforilación , Podocitos/patología , Proteínas Serina-Treonina Quinasas , Proteína S6 Ribosómica/metabolismo
7.
Nitric Oxide ; 118: 31-38, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34756996

RESUMEN

Hydrogen Sulfide (H2S) mediates biological effects in a variety of ways. Due to its strong reducing potential, H2S has been recognized to have an important role in oxidative stress induced hypoxia. It has been reported that H2S production and miRNA can mutually regulate each other. H2S is produced by the catalytic activity of cystathionine-ß-synthase (CBS), which is under the regulation of miRNAs. In this study, we used target gene prediction software, and identified miR-203 as a potential regulator of CBS. We verified this finding using an oxygen and glucose deprivation (OGD) hypoxia cell model in SH-SY5Y cells and pMIR-REPORT™ luciferase miRNA expression reporter vector. Furthermore, transfecting SH-SY5Y cells with miRNA agomir (agonist) and antagomir (antagonist) by lipofectamin RNAiMAX, we further validated miR-203 as a direct regulator of CBS. We also found that miR-203 protects from cell injury by regulating lipid peroxidation, cell apoptosis, and mitochondrial membrane potential. These findings suggest that while over-expression of miR-203 can aggravate OGD induced cell injury, inhibition of miR-203 can protect against OGD induced cell injury. Based on our data and that of others, we propose that miR-203 may regulate oxidative stress induced cell injury by regulating CBS expression and adjusting the levels of H2S production.


Asunto(s)
Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo/fisiología , Animales , Antagomirs/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Peroxidación de Lípido/fisiología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Sprague-Dawley
8.
Cardiovasc Ther ; 2020: 8584763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426037

RESUMEN

BACKGROUND: Although many studies have been performed to elucidate the molecular mechanisms of heart failure, an effective pharmacological therapy to protect cardiac tissues from severe loss of contractile function associated with heart failure after acute myocardial infarction (MI) has yet to be developed. METHODS: We examined the cardioprotective effects of (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid, a new compound with potent antioxidant and antiapoptotic activities in a rat model of heart failure. (Z)-2-Acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid was systemically delivered to rats 6 weeks after MI at different doses (15, 30, and 60 mg/kg). Cardiac function was assessed by hemodynamic measurements. The expression of proinflammatory cytokines, apoptosis-related molecules, and markers of adverse ventricular remodeling was measured using RT-PCR and Western blot. RESULTS: Treatment with (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid significantly improved cardiac function, in particular by increasing dP/dt. Simultaneously, the expression of the proinflammatory cytokines TNF-α and IL-1ß was markedly reduced in the treatment group compared with the MI group. In addition, (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid-treated tissues displayed decreased expression of Bax, caspase-3, and caspase-9 and increased expression of Bcl-2, which was in part due to the promotion of Akt phosphorylation. CONCLUSION: These data demonstrated that (Z)-2-acetoxy-3-(3,4-dihydroxyphenyl) acrylic acid possesses potent cardioprotective effects against cardiac injury in a rat model of heart failure, which is mediated, at least in part, by suppression of the inflammatory and cell apoptosis responses.


Asunto(s)
Acrilatos/farmacología , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Infarto del Miocardio/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
9.
Biogerontology ; 4(1): 15-8, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12652185

RESUMEN

We successfully established an oxidant damage of mimetic aging model using mice induced by D-galactose, and the mimetic aging model is relative to free radical and the accumulation of waste substances in metabolism. The animals were divided into 3 groups: (1) phosphate-buffered saline (PBS); (2) 1% D-galactose; (3) 5% D-galactose by subcutaneous injection every day. After 45 days, mice treated with D-galactose showed a significant increase in the malondialdehyde (MDA), total antioxidant status (TAS) and a decrease in superoxide dismutase (SOD) in the blood compared with the PBS group. In the brain, the D-galactose treated mice exhibited a higher level MDA and a lower level SOD activity. In the liver, only the 5% D-galactose group indicated a significant increase in MDA. By reference to the oxidative biomarkers in blood, brain and liver, we have confirmed the reliability of the mimetic aging model.


Asunto(s)
Envejecimiento/fisiología , Galactosa/metabolismo , Animales , Antioxidantes/metabolismo , Biomarcadores , Galactosa/química , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidantes/metabolismo , Distribución Aleatoria , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA