Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267211

RESUMEN

ABSTRCATO_ST_ABSPurposeC_ST_ABSThis study investigates whether graph-based fusion of imaging data with non-imaging EHR data can improve the prediction of disease trajectory for COVID-19 patients, beyond the prediction performance of only imaging or non-imaging EHR data. Materials and MethodsWe present a novel graph-based framework for fine-grained clinical outcome prediction (discharge, ICU admission, or death) that fuses imaging and non-imaging information using a similarity-based graph structure. Node features are represented by image embedding and edges are encoded with clinical or demographic similarity. ResultsOur experiments on data collected from Emory Healthcare network indicate that our fusion modeling scheme performs consistently better than predictive models using only imaging or non-imaging features, with f1-scores of 0.73, 0.77, and 0.66 for discharge from hospital, mortality, and ICU admission, respectively. External validation was performed on data collected from Mayo Clinic. Our scheme highlights known biases in the model prediction such as bias against patients with alcohol abuse history and bias based on insurance status. ConclusionThe study signifies the importance of fusion of multiple data modalities for accurate prediction of clinical trajectory. Proposed graph structure can model relationships between patients based on non-imaging EHR data and graph convolutional networks can fuse this relationship information with imaging data to effectively predict future disease trajectory more effectively than models employing only imaging or non-imaging data. Forecasting clinical events can enable intelligent resource allocation in hospitals. Our graph-based fusion modeling frameworks can be easily extended to other prediction tasks to efficiently combine imaging data with non-imaging clinical data.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258316

RESUMEN

ImportanceAn artificial intelligence (AI)-based model to predict COVID-19 likelihood from chest x-ray (CXR) findings can serve as an important adjunct to accelerate immediate clinical decision making and improve clinical decision making. Despite significant efforts, many limitations and biases exist in previously developed AI diagnostic models for COVID-19. Utilizing a large set of local and international CXR images, we developed an AI model with high performance on temporal and external validation. ObjectiveInvestigate real-time performance of an AI-enabled COVID-19 diagnostic support system across a 12-hospital system. DesignProspective observational study. SettingLabeled frontal CXR images (samples of COVID-19 and non-COVID-19) from the M Health Fairview (Minnesota, USA), Valencian Region Medical ImageBank (Spain), MIMIC-CXR, Open-I 2013 Chest X-ray Collection, GitHub COVID-19 Image Data Collection (International), Indiana University (Indiana, USA), and Emory University (Georgia, USA) ParticipantsInternal (training, temporal, and real-time validation): 51,592 CXRs; Public: 27,424 CXRs; External (Indiana University): 10,002 CXRs; External (Emory University): 2002 CXRs Main Outcome and MeasureModel performance assessed via receiver operating characteristic (ROC), Precision-Recall curves, and F1 score. ResultsPatients that were COVID-19 positive had significantly higher COVID-19 Diagnostic Scores (median .1 [IQR: 0.0-0.8] vs median 0.0 [IQR: 0.0-0.1], p < 0.001) than patients that were COVID-19 negative. Pre-implementation the AI-model performed well on temporal validation (AUROC 0.8) and external validation (AUROC 0.76 at Indiana U, AUROC 0.72 at Emory U). The model was noted to have unrealistic performance (AUROC > 0.95) using publicly available databases. Real-time model performance was unchanged over 19 weeks of implementation (AUROC 0.70). On subgroup analysis, the model had improved discrimination for patients with "severe" as compared to "mild or moderate" disease, p < 0.001. Model performance was highest in Asians and lowest in whites and similar between males and females. Conclusions and RelevanceAI-based diagnostic tools may serve as an adjunct, but not replacement, for clinical decision support of COVID-19 diagnosis, which largely hinges on exposure history, signs, and symptoms. While AI-based tools have not yet reached full diagnostic potential in COVID-19, they may still offer valuable information to clinicians taken into consideration along with clinical signs and symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA