Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 478(13): 2665-2679, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34160020

RESUMEN

The crystal structure of full-length T7 DNA polymerase in complex with its processivity factor thioredoxin and double-stranded DNA in the polymerization active site exhibits two novel structural motifs in family-A DNA polymerases: an extended ß-hairpin at the fingers subdomain, that interacts with the DNA template strand downstream the primer-terminus, and a helix-loop-helix motif (insertion1) located between residues 102 to 122 in the exonuclease domain. The extended ß-hairpin is involved in nucleotide incorporation on substrates with 5'-overhangs longer than 2 nt, suggesting a role in stabilizing the template strand into the polymerization domain. Our biochemical data reveal that insertion1 of the exonuclease domain makes stabilizing interactions that facilitate proofreading by shuttling the primer strand into the exonuclease active site. Overall, our studies evidence conservation of the 3'-5' exonuclease domain fold between family-A DNA polymerases and highlight the modular architecture of T7 DNA polymerase. Our data suggest that the intercalating ß-hairpin guides the template-strand into the polymerization active site after the T7 primase-helicase unwinds the DNA double helix ameliorating the formation of secondary structures and decreasing the appearance of indels.


Asunto(s)
Bacteriófago T7/enzimología , Dominio Catalítico , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago T7/genética , ADN/química , ADN/genética , Cartilla de ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Polimerizacion , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Moldes Genéticos , Proteínas Virales/química , Proteínas Virales/genética
2.
Genes (Basel) ; 11(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228188

RESUMEN

The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.


Asunto(s)
Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Orgánulos/enzimología , Proteínas de Plantas/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reparación del ADN por Unión de Extremidades/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Evolución Molecular , Proteínas de Plantas/metabolismo
3.
Biochem J ; 477(5): 1049-1059, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32108856

RESUMEN

Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in any other DNAPs. Plant organellar DNAPs from Arabidopsis thaliana (AtPolIA and AtPolIB) are translesion synthesis (TLS) DNAPs able to bypass abasic sites, a lesion that poses a strong block to replicative polymerases. Besides abasic sites, reactive oxidative species and ionizing radiation react with thymine resulting in thymine glycol (Tg), a DNA adduct that is also a strong block to replication. Here, we report that AtPolIA and AtPolIB bypass Tg by inserting an adenine opposite the lesion and efficiently extend from a Tg-A base pair. The TLS ability of AtPolIB is mapped to two conserved lysine residues: K593 and K866. Residue K593 is situated in insertion 1 and K866 is in insertion 3. With basis on the location of both insertions on a structural model of AtPolIIB, we hypothesize that the two positively charged residues interact to form a clamp around the primer-template. In contrast with nuclear and bacterial replication, where lesion bypass involves an interplay between TLS and replicative DNA polymerases, we postulate that plant organellar DNAPs evolved to exert replicative and TLS activities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Secuencia Conservada/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Lisina/metabolismo , Orgánulos/metabolismo , Timina/análogos & derivados , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Polimerasa Dirigida por ADN/genética , Lisina/genética , Orgánulos/genética , Timina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA