Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005121

RESUMEN

Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated at -196 °C for uniaxial tension and four point bending fracture. Previous investigations have shown that cleavage fracture for steels with a predominant acicular ferrite microstructure has not been initiated by the fracture of coarse TiN particles as in ferrite-pearlite, bainite, or martensitic microalloyed steels. The average maximal thickness of cementite plates measured in this work is 0.798 µm and 0.966 µm, for V and TiV steel, respectively. The corresponding stress values required for their fracture according to Griffith's equation are 1970 MPa and 1791 MPa, respectively. Estimated values of the effective surface energy for the V steel with an average cementite volume fraction of 3.8% range from 40 Jm-2 to 86 Jm-2, and for the TiV steel with an average cementite volume fraction of 18.3% range from 55 Jm-2 to 82 Jm-2. The fracture of coarse cementite plates was found to not to be responsible for the cleavage fracture initiation in case of both steels.

2.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268990

RESUMEN

Cleavage fracture of the V and Ti-V microalloyed forging steels was investigated by the four-point bending testing of the notched specimens of Griffith-Owen's type at -196 °C, in conjunction with the finite element analysis and the fractographic examination by scanning electron microscopy. To assess the mixed microstructure consisting mostly of the acicular ferrite, alongside proeutectoid ferrite grains and pearlite, the samples were held at 1250 °C for 30 min and subsequently cooled instill air. Cleavage fracture was initiated in the matrix under the high plastic strains near the notch root of the four-point bending specimens without the participation of the second phase particles in the process. Estimated values of the effective surface energy for the V and the Ti-V microalloyed steel of 37 Jm-2 and 74 Jm-2, respectively, and the related increase of local critical fracture stress were attributed to the increased content of the acicular ferrite. It was concluded that the observed increase of the local stress for cleavage crack propagation through the matrix was due to the increased number of the high angle boundaries, but also that the acicular ferrite affects the cleavage fracture mechanism by its characteristic stress-strain response with relatively low yield strength and considerable ductility at -196 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA