Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22283268

RESUMEN

BackgroundThe annual reappearance of respiratory viruses has been recognized for decades. The onset of the COVID-19 pandemic altered typical respiratory virus transmission patterns. COVID-19 mitigation measures taken during the pandemic were targeted at SARS-CoV-2 respiratory transmission and thus broadly impacted the burden of acute respiratory illnesses (ARIs), in general. MethodsWe used the longitudinal Household Influenza Vaccine Evaluation (HIVE) cohort of households in southeast Michigan to characterize mitigation strategy adherence, respiratory illness burden, and the circulation of 15 respiratory viruses during the COVID-19 pandemic determined by RT-PCR of respiratory specimens collected at illness onset. Study participants were surveyed twice during the study period (March 1, 2020, to June 30, 2021), and serologic specimens were collected for antibody measurement by electrochemiluminescence immunoassay. Incidence rates of ARI reports and virus detections were calculated and compared using incidence rate ratios for the study period and a pre-pandemic period of similar length. ResultsOverall, 437 participants reported a total of 772 ARIs and 329 specimens (42.6%) had respiratory viruses detected. Rhinoviruses were the most frequently detected organism, but seasonal coronaviruses--excluding SARS-CoV-2--were also common. Illness reports and percent positivity were lowest from May to August 2020, when mitigation measures were most stringent. Study participants were more adherent to mitigation measures in the first survey compared with the second survey. Supplemental serology surveillance identified 5.3% seropositivity for SARS-CoV-2 in summer 2020; 3.0% between fall 2020 and winter 2021; and 11.3% in spring 2021. Compared to a pre-pandemic period of similar length, the incidence rate of total reported ARIs for the study period was 50% lower (95% CI: 0.5, 0.6; p<0.001) than the incidence rate from March 1, 2016, to June 30, 2017. ConclusionsThe burden of ARI in the HIVE cohort during the COVID-19 pandemic fluctuated, with declines occurring concurrently with the widespread use of public health measures. It is notable, however, that rhinovirus and seasonal coronaviruses continued to circulate even as influenza and SARS-CoV-2 circulation was low.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273915

RESUMEN

During a period of Omicron variant circulation, we estimated relative VE of COVID-19 mRNA booster vaccination versus primary two-dose series in an ongoing community cohort. Relative VE was 66% (95% CI: 46%, 79%) favoring the booster dose compared to primary series vaccination. Our results support current booster recommendations.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22272497

RESUMEN

Accurate estimates of total burden of SARS-CoV-2 are needed to inform policy, planning and response. We sought to quantify SARS-CoV-2 cases, hospitalizations, and deaths by age in Michigan. COVID-19 cases reported to the Michigan Disease Surveillance System were multiplied by age and time-specific adjustment factors to correct for under-detection. Adjustment factors were estimated in a model fit to incidence data and seroprevalence estimates. Age-specific incidence of SARS-CoV-2 hospitalization, death, and vaccination, and variant proportions were estimated from publicly available data. We estimated substantial under-detection of infection that varied by age and time. Accounting for under-detection, we estimate cumulative incidence of infection in Michigan reached 75% by mid-November 2021, and over 87% of Michigan residents were estimated to have had [≥]1 vaccination dose and/or previous infection. Comparing pandemic waves, the relative burden among children increased over time. Adults [≥]80 years were more likely to be hospitalized or die if infected in fall 2020 than if infected during later waves. Our results highlight the ongoing risk of periods of high SARS-CoV-2 incidence despite widespread prior infection and vaccination. This underscores the need for long-term planning for surveillance, vaccination, and other mitigation measures amidst continued response to the acute pandemic.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260726

RESUMEN

COVID-19 has had high incidence at institutions of higher education (IHE) in the United States, but the transmission dynamics in these settings are not well understood. It remains unclear to what extent IHE-associated outbreaks have contributed to transmission in nearby communities. We implemented high-density prospective genomic surveillance to investigate these dynamics at the University of Michigan-Ann Arbor and the surrounding community during the Fall 2020 semester (August 16th -November 24th). We sequenced complete SARS-CoV-2 genomes from 1659 individuals, including 468 students, representing 20% of cases in students and 25% of total confirmed cases in Washtenaw County over the study interval. Phylogenetic analysis identified over 200 introductions into the student population, most of which were not related to other student cases. There were two prolonged transmission clusters among students that spanned across multiple on-campus residences. However, there were very few genetic descendants of student clusters among non-students during a subsequent November wave of infections in the community. We conclude that outbreaks at the University of Michigan did not significantly contribute to the rise in Washtenaw County COVID-19 incidence during November 2020. These results provide valuable insights into the distinct transmission dynamics of SARS-CoV-2 among IHE populations and surrounding communities.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252493

RESUMEN

Understanding viral load in patients infected with SARS-CoV-2 is critical to epidemiology and infection control. Previous studies have demonstrated that SARS-CoV-2 RNA can be detected for many weeks after symptom onset. The clinical significance of this finding is unclear and, in most patients, likely does not represent active infection. There are, however, patients who shed infectious virus for weeks. Detection of subgenomic RNA transcripts expressed by SARS-CoV-2 has been proposed to represent productive infection and may be a tractable marker for monitoring infectivity. Here, we use RT-PCR to quantify total and subgenomic nucleocapsid (N) and envelope (E) transcripts in 190 SARS-CoV-2 positive samples collected on hospital admission. We relate these findings to duration of symptoms. We find that all transcripts decline at the same rate; however, subgenomic E becomes undetectable before other transcripts. In Kaplan-Meier analysis the median duration of symptoms to a negative test is 14 days for sgE and 25 days for sgN. There is a linear decline in subgenomic RNA compared to total RNA suggesting subgenomic transcript copy number is highly dependent on copy number of total transcripts. The mean difference between total N and subgenomic N is 16-fold (4.0 cycles) and the mean difference between total E and sub-genomic E is 137-fold (7.1 cycles). This relationship is constant over duration of symptoms allowing prediction of subgenomic copy number from total copy number. Although Subgenomic E is undetectable at a time that may more closely reflect the duration of infectivity, its utility in determining active infection may be no more useful than a copy number threshold determined for total transcripts.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-427330

RESUMEN

Analysis of SARS-CoV-2 genetic diversity within infected hosts can provide insight into the generation and spread of new viral variants and may enable high resolution inference of transmission chains. However, little is known about temporal aspects of SARS-CoV-2 intrahost diversity and the extent to which shared diversity reflects convergent evolution as opposed to transmission linkage. Here we use high depth of coverage sequencing to identify within-host genetic variants in 325 specimens from hospitalized COVID-19 patients and infected employees at a single medical center. We validated our variant calling by sequencing defined RNA mixtures and identified a viral load threshold that minimizes false positives. By leveraging clinical metadata, we found that intrahost diversity is low and does not vary by time from symptom onset. This suggests that variants will only rarely rise to appreciable frequency prior to transmission. Although there was generally little shared variation across the sequenced cohort, we identified intrahost variants shared across individuals who were unlikely to be related by transmission. These variants did not precede a rise in frequency in global consensus genomes, suggesting that intrahost variants may have limited utility for predicting future lineages. These results provide important context for sequence-based inference in SARS-CoV-2 evolution and epidemiology.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20042556

RESUMEN

BackgroundCommunity based studies of influenza and other respiratory viruses (e.g. SARS-COV-2) require laboratory confirmation of infection. During the current COVID-19 pandemic, social distancing guidelines require alternative data collection in order protect both research staff and participants. Home-collected respiratory specimens are less resource intensive, can be collected earlier after symptom onset, and provide a low-contact means of data collection. A prospective, multi-year, community-based cohort study is an ideal setting to examine the utility of home-collected specimens for identification of influenza. MethodsWe describe the feasibility and reliability of home-collected specimens for the detection of influenza. We collected data and specimens between October 2014 and June 2017 from the Household Influenza Vaccine Evaluation (HIVE) Study. Cohort participants were asked to collect a nasal swab at home upon onset of acute respiratory illness. Research staff also collected nose and throat swab specimens in the study clinic within 7 days of onset. We estimated agreement using Cohens kappa and calculated sensitivity and specificity of home-collected compared to staff-collected specimens. ResultsWe tested 336 paired staff- and home-collected respiratory specimens for influenza by RT-PCR; 150 staff-collected specimens were positive for influenza A/H3N2, 23 for influenza A/H1N1, 14 for influenza B/Victoria, and 31 for influenza B/Yamagata. We found moderate agreement between collection methods for influenza A/H3N2 (0.70) and B/Yamagata (0.69) and high agreement for influenza A/H1N1 (0.87) and B/Victoria (0.86). Sensitivity ranged from 78-86% for all influenza types and subtypes. Specificity was high for influenza A/H1N1 and both influenza B lineages with a range from 96-100%, and slightly lower for A/H3N2 infections (88%). ConclusionsCollection of nasal swab specimens at home is both feasible and reliable for identification of influenza virus infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA