Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18214, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107341

RESUMEN

Understanding the structure and diversity of microbiomes is critical to establishing olives in non-traditional production areas. Limited studies have investigated soil and root-associated microbiota dynamics in olives across seasons or locations in the United States. We explored the composition and spatiotemporal patterns of the olive-associated microbial communities and specificity in two niches (rhizosphere and root endosphere), seasons (spring, summer, and fall), and domains (bacteria and fungi) in the microbiome of the olive cultivar Arbequina across three olive orchards in Texas. Phylum Proteobacteria, followed by Actinobacteriota, dominated the bacterial populations in the rhizosphere and endosphere. Rubrobacter and Actinophytocola were dominant taxa in the rhizosphere and root endosphere at the genus level. Among fungal communities, phylum Ascomycota was prevalent in the rhizosphere and endosphere, while members of the Chaetomiaceae family outnumbered other taxa in the root endosphere. As per the alpha diversity indices, the rhizosphere at Moulton showed much higher richness and diversity than other places, which predicted a significant difference in rhizosphere between locations for bacterial diversity and richness. There was no significant variation in the bacterial diversity in the niches and the fungal diversity within the root endosphere between locations. Beta diversity analysis confirmed the effect of compartments-in influencing community differences. Microbial diversity was apparent within the endosphere and rhizosphere. The seasons influenced only the rhizosphere fungal diversity, contrasting the bacterial diversity in either niche. The research provided a comprehensive overview of the microbial diversity in olive trees' rhizosphere and root endosphere. The abundance and composition of OTUs associated with the rhizosphere soil of Arbequina suggest its role as a source reservoir in defining the potential endophytes.


Asunto(s)
Bacterias , Microbiota , Olea , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Olea/microbiología , Raíces de Plantas/microbiología , Texas , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Estaciones del Año , Análisis Espacio-Temporal , Biodiversidad , Suelo/química
2.
Sci Rep ; 13(1): 13940, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626106

RESUMEN

Free amino acids in potato tubers contribute to their nutritional value and processing quality. Exploring the natural variation in their accumulation in tubers across diverse genetic backgrounds is critical to potato breeding programs aiming to enhance or partition their distribution effectively. This study assessed variation in the tuber-bound free amino acids in a diversity panel of tetraploid potato clones developed and maintained by the Texas A&M Potato Breeding Program to explore their genetic basis and to obtain genomic-estimated breeding values for applied breeding purposes. Free amino acids content was evaluated in tubers of 217 tetraploid potato clones collected from Dalhart, Texas in 2019 and 2020, and Springlake, Texas in 2020. Most tuber amino acids were not affected by growing location, except histidine and proline, which were significantly lower (- 59.0%) and higher (+ 129.0%), respectively, at Springlake, Texas (a location that regularly suffers from abiotic stresses, mainly high-temperature stress). Single nucleotide polymorphism markers were used for genome-wide association studies and genomic selection of clones based on amino acid content. Most amino acids showed significant variations among potato clones and moderate to high heritabilities. Principal component analysis separated fresh from processing potato market classes based on amino acids distribution patterns. Genome-wide association studies discovered 33 QTL associated with 13 free amino acids. Genomic-estimated breeding values were calculated and are recommended for practical potato breeding applications to select parents and advance clones with the desired free amino acid content.


Asunto(s)
Antifibrinolíticos , Solanum tuberosum , Aminoácidos/genética , Solanum tuberosum/genética , Estudio de Asociación del Genoma Completo , Tetraploidía , Fitomejoramiento
3.
Plants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834599

RESUMEN

Grafting using suitable rootstocks mitigates the adverse effects caused by environmental stresses such as water deficit in the tomato crop. Solanum pennellii and Solanum peruvianum, the wild relatives of tomato, are used as rootstocks due to their tolerance to water deficit and soil-borne diseases. This study focused on evaluating physiological and biochemical responses of tomato plants grafted onto S. pennellii and S. peruvianum rootstocks during water deficit. The commercial tomato cultivar 'HM 1823' (HM) either self-grafted (HM/HM) or grafted onto S. pennellii (HM/PN), S. peruvianum (HM/PR), and 'Multifort' (HM/MU) rootstocks were subjected to water-deficit stress by withholding irrigation for eight days. The performance of the grafted plants under water deficit was evaluated using physiological and biochemical parameters in vegetative tissues of the grafted plants. Plants grafted using S. pennellii (PN) and S. peruvianum (PR) rootstocks showed higher values of water potential (Ψw), relative water content (RWC), net photosynthetic rate (A), and leaf water use efficiencies (WUE) compared to HM, HM/HM, and HM/MU. Plants grafted onto tomato wild relatives showed the lowest malondialdehyde (MDA) and proline content. This study demonstrated that the rootstocks of wild tomato relatives reduced the effect of water deficit to a greater extent through better physiological, metabolic, and biochemical adjustments than self-grafting plants.

4.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069886

RESUMEN

Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and other minerals. This study aimed to investigate the proposed hypothesis that a complex network of genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes with contrasting oxalate phenotypes was performed under normal physiological conditions. A total of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment of the metabolic and secondary metabolite pathways. The expression profiles of genes associated with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3) all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation for novel insights into oxalate metabolism in spinach.


Asunto(s)
Oxalatos/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , RNA-Seq/métodos , Spinacia oleracea/fisiología , Transcriptoma/genética
5.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839408

RESUMEN

Watermelon (Citrullus lanatus L.) is a widely popular vegetable fruit crop for human consumption. Soil salinity is among the most critical problems for agricultural production, food security, and sustainability. The transcriptomic and the primary molecular mechanisms that underlie the salt-induced responses in watermelon plants remain uncertain. In this study, the photosynthetic efficiency of photosystem II, free amino acids, and transcriptome profiles of watermelon seedlings exposed to short-term salt stress (300 mM NaCl) were analyzed to identify the genes and pathways associated with response to salt stress. We observed that the maximal photochemical efficiency of photosystem II decreased in salt-stressed plants. Most free amino acids in the leaves of salt-stressed plants increased many folds, while the percent distribution of glutamate and glutamine relative to the amino acid pool decreased. Transcriptome analysis revealed 7622 differentially expressed genes (DEGs) under salt stress, of which 4055 were up-regulated. The GO analysis showed that the molecular function term "transcription factor (TF) activity" was enriched. The assembled transcriptome demonstrated up-regulation of 240 and down-regulation of 194 differentially expressed TFs, of which the members of ERF, WRKY, NAC bHLH, and MYB-related families were over-represented. The functional significance of DEGs associated with endocytosis, amino acid metabolism, nitrogen metabolism, photosynthesis, and hormonal pathways in response to salt stress are discussed. The findings from this study provide novel insights into the salt tolerance mechanism in watermelon.


Asunto(s)
Citrullus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Plantones/efectos de los fármacos , Cloruro de Sodio/farmacología , Transcriptoma , Aminoácidos/metabolismo , Citrullus/genética , Citrullus/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Anotación de Secuencia Molecular , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico
6.
Sci Rep ; 10(1): 13535, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782333

RESUMEN

Grafting with vigorous rootstocks could offer tomato growers in Texas sustainable and efficient option to achieve reliable yield across a range of production systems and locations. Genotypes (G) of grafted and non-grafted tomato were grown in different environments (E) in the 2017 and 2018 spring seasons. The objectives of the study were to (i) evaluate the effects of production system and grafting on tomato yield traits, (ii) determine the size of genotypic and genotype by environment interaction (G × E) variance components, and (iii) evaluate the relative stability of tested genotypes for yield and its components across production environments. In 2017, genotypes were non-grafted 'TAMU Hot Ty' (TAM) and 'Tycoon' (TY) and each grafted on commercial tomato rootstocks 'Estamino' (TAM/ES, TY/ES) and 'Multifort' (TAM/MU, TY/MU) while in 2018, TAM and 'HM1823' (HM) were grafted on 'Estamino' (TAM/ES, HM/ES) and 'Multifort' (TAM/MU, HM/MU). Testing environments were high tunnel (HT) and open-field (OF) in Uvalde in 2017 while in 2018, these were HT and OF in Lubbock (LU-HT, LU-OF), Overton (OV-HT, OV-OF), Uvalde (UV-HT, UV-OF), and Weslaco (WE-HT, WE-OF). Total and marketable yields, fruit number per plant, and average fruit weight were significantly affected by E, G, and G × E interaction. Environmental component contributed 71-86% to the total variation for all these traits, while genotype explained 1.5-10.8%, and the contribution of G × E ranged between 4.3 to 6.7%. Estimation of the univariate statistic parameters and genotype plus genotype × environment (GGE) biplot analysis indicated that HM/MU and HM/ES were the most stable graft combination with the highest total and marketable yields, while TAM/ES was very unstable for yields across test environments. TAM/MU was stable but with yield lower than the grand mean. These results suggest that high tomato yields could be consistently achieved with grafted combination (HM/MU and HM/ES) especially under high tunnel production system across the regions of Texas.


Asunto(s)
Frutas/crecimiento & desarrollo , Interacción Gen-Ambiente , Genotipo , Fenotipo , Solanum lycopersicum/crecimiento & desarrollo , Frutas/genética , Solanum lycopersicum/genética , Estaciones del Año , Texas
7.
PLoS One ; 15(5): e0232011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374731

RESUMEN

Nitrogen (N) is critical to the growth and productivity of crops. To understand the molecular mechanisms influenced by N stress, we used RNA-Sequencing (RNA-Seq) to analyze differentially expressed genes (DEGs) in root and leaf tissues of spinach. N stress negatively influenced photosynthesis, biomass accumulation, amino acid profiles, and partitioning of N across tissues. RNA-seq analysis revealed that N stress caused most transcriptomic changes in roots, identifying 1,346 DEGs. High-affinity nitrate transporters (NRT2.1, NRT2.5) and glutamine amidotransferase (GAT1) genes were strongly induced in roots in response to N deplete and replete conditions, respectively. GO and KEGG analyses revealed that the functions associated with metabolic pathways and nutrient reservoir activity were enriched due to N stress. Whereas KEGG pathway enrichment analysis indicated the upregulation of DEGs associated with DNA replication, pyrimidine, and purine metabolism in the presence of high N in leaf tissue. A subset of transcription factors comprising bHLH, MYB, WRKY, and AP2/ERF family members was over-represented in both tissues in response to N perturbation. Interesting DEGs associated with N uptake, amino acid metabolism, hormonal pathway, carbon metabolism, along with transcription factors, were highlighted. The results provide valuable information about the underlying molecular processes in response to N stress in spinach and; could serve as a resource for functional analysis of candidate genes/pathways and enhancement of nitrogen use efficiency.


Asunto(s)
Nitrógeno/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Estrés Fisiológico/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Nitrógeno/deficiencia , Nitrógeno/farmacología , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Spinacia oleracea/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos
8.
Front Plant Sci ; 11: 512, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431723

RESUMEN

A non-protein amino acid, citrulline, is a compatible solute involved in the maintenance of cellular osmolarity during abiotic stresses. Despite its significance, a coherent model indicating the role of citrulline during stress conditions has not yet emerged. We have used watermelon, naturally rich in citrulline, as a model to understand its accumulation during drought stress and nitrogen perturbation using transcriptomic and metabolomic analysis. Experiments were performed in the semi-controlled environment, and open field to study the accumulation of drought-induced citrulline in the vegetative tissues of watermelon by monitoring the stress treatments using physiological measurements. The amino acid profiling of leaves and stems in response to drought stress showed up to a 38 and 16-fold increase in citrulline content, respectively. Correlation between amino acids indicated a concomitant activation of a metabolic pathway that included citrulline, its precursor (ornithine), and catabolic product (arginine). Consistent with its accumulation, the gene expression analysis and RNA-Sequencing confirmed activation of citrulline biosynthesis-related genes - Ornithine carbamoyl-transferase (OTC), N-acetylornithine deacetylase (AOD) and Carbamoyl phosphate synthases (CPS), and down-regulation of catabolic genes; Arginosuccinate lyase (ASL) and Arginosuccinate synthases (ASS) in drought-stressed leaf tissues. Based on the relative abundance in the nitrogen-depleted vegetative tissues and down-regulation of genes involved in citrulline biosynthesis, we also demonstrated that the nitrogen status of the plant regulates citrulline. Taken together, these data provide further insights into the metabolic and molecular mechanisms underlying the amino acid metabolism under environmental stress and the significance of non-protein amino acid citrulline in plants.

9.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766598

RESUMEN

Watermelon fruit contains a high percentage of amino acid citrulline (Cit) and arginine (Arg). Cit and Arg accumulation in watermelon fruit are most likely mediated by both de novo synthesis from other amino acids within fruits and direct import from source tissues (leaves) through the phloem. The amino acid transporters involved in the import of Cit, Arg, and their precursors into developing fruits of watermelon have not been reported. In this study, we have compiled the list of putative amino acid transporters in watermelon and characterized transporters that are expressed in the early stage of fruit development. Using the yeast complementation study, we characterized ClAAP3 (Cla023187) and ClAAP6 (Cla023090) as functional amino acid transporters belonging to the family of amino acid permease (AAP) genes. The yeast growth and uptake assays of radiolabeled amino acid suggested that ClAAP3 and ClAAP6 can transport a broad spectrum of amino acids. Expression of translational fusion proteins with a GFP reporter in Nicotiana benthamiana leaves confirmed the ER- and plasma membrane-specific localization, suggesting the role of ClAAP proteins in the cellular import of amino acids. Based on the gene expression profiles and functional characterization, ClAAP3 and ClAAP6 are expected to play a major role in regulation of amino acid import into developing watermelon fruits.


Asunto(s)
Sistemas de Transporte de Aminoácidos/biosíntesis , Citrullus/metabolismo , Frutas/metabolismo , Proteínas de Plantas/biosíntesis , Sistemas de Transporte de Aminoácidos/genética , Arginina/genética , Arginina/metabolismo , Citrulina/genética , Citrulina/metabolismo , Citrullus/genética , Frutas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Especificidad por Sustrato , Nicotiana/genética , Nicotiana/metabolismo
10.
Phytochemistry ; 162: 129-140, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30884257

RESUMEN

Citrulline, a non-protein amino acid, is present in large amounts in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai Cucurbitaceae) fruits. Amino acid profiling of various tissues of cv. Charleston Gray during plant development confirmed progressive accumulation of citrulline only in the fruit flesh and rind tissues. Citrulline content was positively correlated with precursor (ornithine) and by-product (arginine) amino acids during fruit ripening. Genetic variation in the partitioning of citrulline and related amino acids in the flesh and rind tissues was confirmed in a sub-set of watermelon cultivars. No correlation was established between morphological fruit traits (size and rind properties) and citrulline content. To understand the regulation of citrulline accumulation, we investigated the expression of genes associated with its biosynthesis and catabolism in flesh and rind tissues during fruit development. The expression of ornithine carbamoyltransferase (OTC) involved in the ultimate step of citrulline synthesis remained steady in both tissues. The expression of N-acetylornithine aminotransferase (N-AOA) involved in the production of N-acetylornithine and N-acetylornithine deacetylase (AOD-3) involved in ornithine synthesis coincided with increasing accumulation of citrulline in flesh and rind tissues during fruit development. Down-regulation N-acetylornithine-glutamate acetyltransferase (N-AOGA) suggests the subordinate role of the non-cyclic pathway in citrulline synthesis. Eccentricity between citrulline accumulation and expression of carbamoyl phosphate synthases (CPS-1, CPS-2) during fruit development suggest that the localized synthesis of carbamoyl phosphates may not be required for citrulline synthesis. Most genes involved in citrulline break-down (Argininosuccinate synthases - ASS-1, ASS-2, and ASS-3, Argininosuccinate lyases - ASL-1, Ornithine decarboxylase - ODC, Arginine decarboxylase - ADC) were consistently down-regulated during fruit development.


Asunto(s)
Citrulina/biosíntesis , Citrulina/metabolismo , Citrullus/genética , Citrullus/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo
11.
Mol Microbiol ; 77(1): 252-71, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20487278

RESUMEN

Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.


Asunto(s)
Proteínas Bacterianas/farmacología , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas/microbiología , Streptomyces/enzimología , Streptomyces/patogenicidad , Factores de Virulencia/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Permeabilidad de la Membrana Celular , Electroforesis en Gel Bidimensional , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Proteoma/análisis , Solanum tuberosum/microbiología , Streptomyces/química , Streptomyces/crecimiento & desarrollo , Factores de Virulencia/genética
12.
Antonie Van Leeuwenhoek ; 98(2): 179-94, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20396949

RESUMEN

Plant pathogenicity is rare in the genus Streptomyces, with only a dozen or so species possessing this trait out of the more than 900 species described. Nevertheless, such species have had a significant impact on agricultural economies throughout the world due to their ability to cause important crop diseases such as potato common scab, which is characterized by lesions that form on the potato tuber surface. All pathogenic species that cause common scab produce a family of phytotoxins called the thaxtomins, which function as cellulose synthesis inhibitors. In addition, the nec1 and tomA genes are conserved in several pathogenic streptomycetes, the former of which is predicted to function in the suppression of plant defense responses. Streptomyces scabies is the oldest plant pathogen described and has a world-wide distribution, whereas species such as S. turgidiscabies and S. acidiscabies are believed to be newly emergent pathogens found in more limited geographical locations. The genome sequence of S. scabies 87-22 was recently completed, and comparative genomic analyses with other sequenced microbial pathogens have revealed the presence of additional genes that may play a role in plant pathogenicity, an idea that is supported by functional analysis of one such putative virulence locus. In addition, the availability of multiple genome sequences for both pathogenic and nonpathogenic streptomycetes has provided an opportunity for comparative genomic analyses to identify the Streptomyces pathogenome. Such genomic analyses will contribute to the fundamental understanding of the mechanisms and evolution of plant pathogenicity and plant-microbe biology within this genus.


Asunto(s)
Genómica , Enfermedades de las Plantas/microbiología , Streptomyces/genética , Streptomyces/patogenicidad , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Datos de Secuencia Molecular , Filogenia , Plantas/microbiología , Alineación de Secuencia , Streptomyces/clasificación , Streptomyces/metabolismo , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Antonie Van Leeuwenhoek ; 94(1): 3-10, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18392685

RESUMEN

Streptomyces species are best known for their ability to produce a wide array of medically and agriculturally important secondary metabolites. However, there is a growing number of species which, like Streptomyces scabies, can function as plant pathogens and cause scab disease on economically important crops such as potato. All of these species produce the phytotoxin thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant tissue. The biosynthesis of thaxtomin involves conserved non-ribosomal peptide synthetases, P450 monooxygenases, and a nitric oxide synthase, the latter being required for nitration of the toxin. This nitric oxide synthase is also responsible for the production of diffusible nitric oxide by scab-causing streptomycetes at the host-pathogen interface, suggesting that nitric oxide production might play an additional role during the infection process. The thaxtomin biosynthetic genes are transcriptionally regulated by an AraC/XylS family regulator, TxtR, which is conserved in pathogenic streptomycetes and is encoded within the thaxtomin biosynthetic gene cluster. The TxtR protein specifically binds cellobiose, a known inducer of thaxtomin biosynthesis, and cellobiose is required for expression of the biosynthetic genes. A second virulence gene in pathogenic Streptomyces species, nec1, encodes a novel secreted protein that may suppress plant defence responses. The thaxtomin biosynthetic genes and nec1 are contained on a large mobilizable pathogenicity island; the transfer of this island to recipient streptomycetes likely explains the rapid emergence of new pathogenic species. The newly available genome sequence of S. scabies will provide further insight into the mechanisms utilized by pathogenic streptomycetes during plant-microbe interactions.


Asunto(s)
Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/metabolismo , Streptomyces/patogenicidad , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vías Biosintéticas , Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Piperazinas/química , Streptomyces/clasificación , Streptomyces/genética , Virulencia
14.
Mol Microbiol ; 66(3): 633-42, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17919290

RESUMEN

Streptomyces scabies is the best studied of those streptomycetes that cause an economically important disease known as potato scab. The phytotoxin thaxtomin is made exclusively by these pathogens and is required for virulence. Here we describe regulation of thaxtomin biosynthesis by TxtR, a member of the AraC/XylS family of transcriptional regulators. The txtR gene is imbedded in the thaxtomin biosynthetic pathway and is located on a conserved pathogenicity island in S. scabies, S. turgidiscabies and S. acidiscabies. Thaxtomin biosynthesis was abolished and virulence was almost eliminated in the txtR deletion mutant of S. scabies 87.22. Accumulation of thaxtomin biosynthetic gene (txtA, txtB, txtC, nos) transcripts was reduced compared with the wild-type S. scabies 87.22. NOS-dependent nitric oxide production by S. scabies was also reduced in the mutant. The TxtR protein bound cellobiose, an inducer of thaxtomin production, and transcription of txtR and thaxtomin biosynthetic genes was upregulated in response to cellobiose. TxtR is the first example of an AraC/XylS family protein regulated by cellobiose. Together, these data suggest that cellobiose, the smallest oligomer of cellulose, may signal the availability of expanding plant tissue, which is the site of action of thaxtomin.


Asunto(s)
Proteínas Bacterianas/genética , Genes Reguladores , Piperazinas/metabolismo , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Datos de Secuencia Molecular , Óxido Nítrico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Streptomyces/metabolismo , Streptomyces/patogenicidad , Nicotiana/microbiología , Virulencia/genética
15.
Mol Plant Microbe Interact ; 20(7): 751-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17601163

RESUMEN

Streptomyces turgidiscabies, a cause of potato scab, possesses a mobilizable pathogenicity island containing multiple virulence genes and a cytokinin biosynthetic pathway. These biosynthetic genes are homologous and collinear with the fas operon in Rhodococcus fascians. Reverse-transcriptase polymerase chain reaction of S. turgidiscabies demonstrated that all six genes were transcribed in oat bran broth with and without glucose, though transcription was partially repressed by glucose. The supernatant of S. turgidiscabies cultures had cytokinin activity in callus initiation and differentiation assays. Arabidopsis and tobacco plants inoculated with a thaxtomin-deficient mutant (deltanos) produced leafy galls, indistinguishable from those produced by R. fascians. Deletion of the ipt gene in the pathway eliminated gall phenotype. Other symptoms on tobacco included production of hairy roots and de novo meristems.


Asunto(s)
Citocininas/biosíntesis , Hojas de la Planta/microbiología , Tumores de Planta/microbiología , Streptomyces/genética , Secuencia de Aminoácidos , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Orden Génico , Modelos Biológicos , Datos de Secuencia Molecular , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhodococcus/genética , Rhodococcus/metabolismo , Homología de Secuencia de Aminoácido , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo , Nicotiana/microbiología
16.
Mol Plant Microbe Interact ; 20(6): 599-608, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17555268

RESUMEN

Emergence of new, economically important plant-pathogenic species in the mostly saprophytic genus Streptomyces involves acquisition of a large, mobile pathogenicity island (PAI). Biosynthetic genes for a phytotoxin, thaxtomin A, are contained on this PAI. The Nec1 protein has necrogenic activity on excised potato tuber tissue, and the encoding gene is highly conserved in plant-pathogenic Streptomyces spp. The G+C content of nec1 indicates lateral transfer from an unrelated taxon; however, the nucleic acid and protein databases have not yielded homologs. Data presented in this article demonstrate that the Nec1 protein is necrogenic when expressed in Escherichia coli and that an active 16-kDa form of Nec1 is secreted from the plant pathogen Streptomyces turgidiscabies. Deletion analysis of nec1 demonstrated that the 151-amino-acid C-terminal region of the Nec1 protein is sufficient to confer necrogenic activity. Analysis of nec1 transcriptional start sites indicates that two mRNA species are produced and that the site of transcription initiation is influenced by glucose. S. turgidiscabies containing a nec1 deletion was greatly compromised in virulence on Arabidopsis thaliana, Nicotiana tabacum, and Raphanus sativus seedlings. The wild-type strain, S. turgidiscabies Car8, aggressively colonized and infected the root meristem of radish, whereas the deltanec1 mutant Car811 did not. Taken together, these data suggest that Nec1 is a secreted virulence protein with a conserved plant cell target that acts early in plant infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Streptomyces/patogenicidad , Secuencia de Aminoácidos , Arabidopsis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Genes Bacterianos , Datos de Secuencia Molecular , Fenotipo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas/genética , Raphanus/microbiología , Eliminación de Secuencia , Streptomyces/clasificación , Streptomyces/metabolismo , Nicotiana/microbiología , Sitio de Iniciación de la Transcripción , Virulencia
17.
Annu Rev Phytopathol ; 44: 469-87, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16719719

RESUMEN

Among the multitude of soil-inhabiting, saprophytic Streptomyces species are a growing number of plant pathogens that cause economically important diseases, including potato scab. Streptomyces scabies is the dominant pathogenic species worldwide, but is only one of many that cause very similar disease symptoms on plants. Molecular genetic analysis is beginning to identify the mechanisms used by plant pathogenic species to manipulate their hosts. The nitrated dipeptide phytotoxin, thaxtomin, inhibits cellulose biosynthesis in expanding plant tissues, stimulates Ca2+ spiking, and causes cell death. A secreted necrogenic protein, Nec1, contributes to virulence on diverse plant species. The thaxtomin biosynthetic genes and nec1 lie on a large mobilizable PAI, along with other putative virulence genes including a cytokinin biosynthetic pathway and a saponinase homolog. The PAI is mobilized during conjugation and site-specifically inserts in the linear chromosome of recipient species, accounting for the emergence of new pathogens in agricultural systems. The recently available genome sequence of S. scabies will accelerate research on host-pathogen interactions.


Asunto(s)
Evolución Biológica , Enfermedades de las Plantas/microbiología , Streptomyces/genética , Streptomyces/fisiología , Plantas/microbiología
18.
Mol Microbiol ; 55(4): 1025-33, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15686551

RESUMEN

Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.


Asunto(s)
Enfermedades de las Plantas/microbiología , Plantas/microbiología , Streptomyces/patogenicidad , Secuencia de Bases , ADN Bacteriano/genética , Enzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/microbiología , Streptomyces/clasificación , Streptomyces/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA