Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36425, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281471

RESUMEN

The Gazelle Optimization Algorithm (GOA) is an innovative nature-inspired metaheuristic algorithm, designed to mimic the agile and efficient hunting strategies of gazelles. Despite its promising performance in solving complex optimization problems, there is still a significant scope for enhancing its efficiency and robustness. This paper introduces several novel variants of GOA, integrating adaptive strategy, Levy flight strategy, Roulette wheel selection strategy, and random walk strategy. These enhancements aim to address the limitations of the original GOA and improve its performance in diverse optimization scenarios. The proposed algorithms are rigorously tested on CEC 2014 and CEC 2017 benchmark functions, five engineering problems, and a Total Harmonic Distortion (THD) minimization problem. The results demonstrate the superior performance of the proposed variants compared to the original GOA, providing valuable insights into their applicability and effectiveness.

2.
Sci Rep ; 14(1): 18967, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152172

RESUMEN

Recent sensor, communication, and computing technological advancements facilitate smart grid use. The heavy reliance on developed data and communication technology increases the exposure of smart grids to cyberattacks. Existing mitigation in the electricity grid focuses on protecting primary or redundant measurements. These approaches make certain assumptions regarding false data injection (FDI) attacks, which are inadequate and restrictive to cope with cyberattacks. The reliance on communication technology has emphasized the exposure of power systems to FDI assaults that can bypass the current bad data detection (BDD) mechanism. The current study on unobservable FDI attacks (FDIA) reveals the severe threat of secured system operation because these attacks can avoid the BDD method. Thus, a Data-driven learning-based approach helps detect unobservable FDIAs in distribution systems to mitigate these risks. This study presents a new Hybrid Metaheuristics-based Dimensionality Reduction with Deep Learning for FDIA (HMDR-DLFDIA) Detection technique for Enhanced Network Security. The primary objective of the HMDR-DLFDIA technique is to recognize and classify FDIA attacks in the distribution systems. In the HMDR-DLFDIA technique, the min-max scalar is primarily used for the data normalization process. Besides, a hybrid Harris Hawks optimizer with a sine cosine algorithm (hybrid HHO-SCA) is applied for feature selection. For FDIA detection, the HMDR-DLFDIA technique utilizes the stacked autoencoder (SAE) method. To improve the detection outcomes of the SAE model, the gazelle optimization algorithm (GOA) is exploited. A complete set of experiments was organized to highlight the supremacy of the HMDR-DLFDIA method. The comprehensive result analysis stated that the HMDR-DLFDIA technique performed better than existing DL models.

3.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571602

RESUMEN

The real-time vehicular traffic system is an integral part of the urban vehicular traffic system, which provides effective traffic signal control for a large multifaceted traffic network and is a highly challenging distributed control problem. Coordinating vehicular traffic enables the network model to deliver an efficient service flow. Consider that there are four lanes of vehicular traffic in this situation, allowing parallel vehicle movements to occur without causing an accident. In this instance, the vehicular system's control parameters are time and vehicle volume. In this work, vehicular traffic flow is examined, and an algorithm to estimate vehicle waiting time in each direction is estimated. The effectiveness of the proposed vehicle traffic signal distribution control system by comparing the experimental results with a real-time vehicular traffic system is verified. This is also illustrated numerically.

4.
J Appl Stat ; 50(3): 477-494, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819076

RESUMEN

In recent days, COVID-19 pandemic has affected several people's lives globally and necessitates a massive number of screening tests to detect the existence of the coronavirus. At the same time, the rise of deep learning (DL) concepts helps to effectively develop a COVID-19 diagnosis model to attain maximum detection rate with minimum computation time. This paper presents a new Residual Network (ResNet) based Class Attention Layer with Bidirectional LSTM called RCAL-BiLSTM for COVID-19 Diagnosis. The proposed RCAL-BiLSTM model involves a series of processes namely bilateral filtering (BF) based preprocessing, RCAL-BiLSTM based feature extraction, and softmax (SM) based classification. Once the BF technique produces the preprocessed image, RCAL-BiLSTM based feature extraction process takes place using three modules, namely ResNet based feature extraction, CAL, and Bi-LSTM modules. Finally, the SM layer is applied to categorize the feature vectors into corresponding feature maps. The experimental validation of the presented RCAL-BiLSTM model is tested against Chest-X-Ray dataset and the results are determined under several aspects. The experimental outcome pointed out the superior nature of the RCAL-BiLSTM model by attaining maximum sensitivity of 93.28%, specificity of 94.61%, precision of 94.90%, accuracy of 94.88%, F-score of 93.10% and kappa value of 91.40%.

5.
Diagnostics (Basel) ; 13(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36832226

RESUMEN

Noninvasive blood pressure estimation is crucial for cardiovascular and hypertension patients. Cuffless-based blood pressure estimation has received much attention recently for continuous blood pressure monitoring. This paper proposes a new methodology that combines the Gaussian process with hybrid optimal feature decision (HOFD) in cuffless blood pressure estimation. First, we can choose one of the feature selection methods: robust neighbor component analysis (RNCA), minimum redundancy, maximum relevance (MRMR), and F-test, based on the proposed hybrid optimal feature decision. After that, a filter-based RNCA algorithm uses the training dataset to obtain weighted functions by minimizing the loss function. Next, we combine the Gaussian process (GP) algorithm as the evaluation criteria, which is used to determine the best feature subset. Hence, combining GP with HOFD leads to an effective feature selection process. The proposed combining Gaussian process with the RNCA algorithm shows that the root mean square errors (RMSEs) for the SBP (10.75 mmHg) and DBP (8.02 mmHg) are lower than those of the conventional algorithms. The experimental results represent that the proposed algorithm is very effective.

6.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679583

RESUMEN

Twisted light beams such as optical angular momentum (OAM) with numerous possible orthogonal states have drawn the prodigious contemplation of researchers. OAM multiplexing is a futuristic multi-access technique that has not been scrutinized for optical satellite communication (OSC) systems thus far, and it opens up a new window for ultra-high-capacity systems. This paper presents the 4.8 Tbps (5 wavelengths × 3 OAM beams × 320 Gbps) ultra-high capacity OSC system by incorporating polarization division multiplexed (PDM) 256-Quadrature amplitude modulation (256-QAM) and OAM beams. To realize OAM multiplexing, Laguerre Gaussian (LG) transverse mode profiles such as LG00, LG140, and LG400 were used in the proposed study. The effects of the receiver's digital signal processing (DSP) module were also investigated, and performance improvement was observed using DSP for its potential to compensate for the effects of dispersion, phase errors, and nonlinear effects using the blind phase search (BPS), Viterbi phase estimation (VPE), and the constant modulus algorithm (CMA). The results revealed that the proposed OAM-OSC system successfully covered the 22,000 km OSC link distance and, out of three OAM beams, fundamental mode LG00 offered excellent performance. Further, a detailed comparison of the proposed system and reported state-of-the-art schemes was performed.


Asunto(s)
Algoritmos , Refracción Ocular , Movimiento (Física) , Distribución Normal , Comunicaciones por Satélite
7.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366138

RESUMEN

Graph theory is a useful mathematical structure used to model pairwise relations between sensor nodes in wireless sensor networks. Graph equations are nothing but equations in which the unknown factors are graphs. Many problems and results in graph theory can be formulated in terms of graph equations. In this paper, we solved some graph equations of detour two-distance graphs, detour three-distance graphs, detour antipodal graphs involving with the line graphs.

8.
Sensors (Basel) ; 22(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684607

RESUMEN

Optimization of the energy efficiency, fairness, and rates of the system is a vital part of communication systems. Multiple access techniques have a huge potential to enhance such performance parameters. This paper studies the performance of NOMA and OMA systems in a singular cell environment, where the cellular users are distributed randomly, and cooperative relays are considered for better system reliability. The relay nodes forward the signals to the cell-edge users. This paper considers a practical scenario where all the relay equipment is distributed with non-uniform battery power levels. The performance of OMA and NOMA schemes is compared based on the key performance indicators: sum rate, fairness, and energy efficiency. The fairness factor determines fairness in the allocation of resources to all the system's users. The performance of the two schemes is assessed in three deployment scenarios: urban, suburban, and rural scenarios. Through numerical results, it is proved that the performance of the NOMA dominates the OMA scheme.


Asunto(s)
Redes de Comunicación de Computadores , Noma , Suministros de Energía Eléctrica , Humanos , Fenómenos Físicos , Reproducibilidad de los Resultados
9.
Cancers (Basel) ; 14(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681749

RESUMEN

Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists' subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.

10.
Biology (Basel) ; 11(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35625393

RESUMEN

The practice of Deep Convolution neural networks in the field of medicine has congregated immense success and significance in present situations. Previously, researchers have developed numerous models for detecting abnormalities in musculoskeletal radiographs of upper extremities, but did not succeed in achieving respectable accuracy in the case of finger radiographs. A novel deep neural network-based hybrid architecture named ComDNet-512 is proposed in this paper to efficiently detect the bone abnormalities in the musculoskeletal radiograph of a patient. ComDNet-512 comprises a three-phase pipeline structure: compression, training of the dense neural network, and progressive resizing. The ComDNet-512 hybrid model is trained with finger radiographs samples to make a binary prediction, i.e., normal or abnormal bones. The proposed model showed phenomenon outcomes when cross-validated on the testing samples of arthritis patients and gives many superior results when compared with state-of-the-art practices. The model is able to achieve an area under the ROC curve (AUC) equal to 0.894 (sensitivity = 0.941 and specificity = 0.847). The Precision, Recall, F1 Score, and Kappa values, recorded as 0.86, 0.94, 0.89, and 0.78, respectively, are better than any of the previous models'. With an increasing appearance of enormous cases of musculoskeletal conditions in people, deep learning-based computational solutions can play a big role in performing automated detections in the future.

11.
Comput Intell Neurosci ; 2022: 7940895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602637

RESUMEN

Wireless sensor network (WSN) comprises numerous compact-sized sensor nodes which are linked to one another. Lifetime maximization of WSN is considered a challenging problem in the design of WSN since its energy-limited capacity of the inbuilt batteries exists in the sensor nodes. Earlier works have focused on the design of clustering and routing techniques to accomplish energy efficiency and thereby result in an increased lifetime of the network. The multihop route selection process can be treated as an NP-hard problem and can be solved by the use of computational intelligence techniques such as fuzzy logic and swarm intelligence (SI) algorithms. With this motivation, this article aims to focus on the design of swarm intelligence with an adaptive neuro-fuzzy inference system-based routing (SI-ANFISR) protocol for clustered WSN. The proposed SI-ANFISR technique aims to determine the cluster heads (CHs) and optimal routes for multihop communication in the network. To accomplish this, the SI-ANFISR technique primarily employs a weighted clustering algorithm to elect CHs and construct clusters. Besides, the SI-ANFISR technique involves the design of an ANFIS model for the selection process, which make use of three input parameters, namely, residual energy, node degree, and node history. In order to optimally adjust the membership function (MF) of the ANFIS model, the squirrel search algorithm (SSA) is utilized. None of the earlier works have used ANFIS with SSA for the routing process. The design of SSA to tune the MFs of the ANFIS model for optimal routing process in WSN shows the novelty of the study. The experimental validation of the SI-ANFISR technique takes place, and the results are inspected under different aspects. The simulation results highlighted the significant performance of the SI-ANFISR technique compared to the recent techniques with a maximum throughput of 43838 kbps and residual energy of 0.4800J, respectively.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Análisis por Conglomerados , Lógica Difusa , Inteligencia
12.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960507

RESUMEN

As a standard digital signature may be verified by anybody, it is unsuitable for personal or economically sensitive applications. The chameleon signature system was presented by Krawczyk and Rabin as a solution to this problem. It is based on a hash then sign model. The chameleon hash function enables the trapdoor information holder to compute a message digest collision. The holder of a chameleon signature is the recipient of a chameleon signature. He could compute collision on the hash value using the trapdoor information. This keeps the recipient from disclosing his conviction to a third party and ensures the privacy of the signature. The majority of the extant chameleon signature methods are built on the computationally infeasible number theory problems, like integer factorization and discrete log. Unfortunately, the construction of quantum computers would be rendered insecure to those schemes. This creates a solid requirement for construct chameleon signatures for the quantum world. Hence, this paper proposes a novel quantum secure chameleon signature scheme based on hash functions. As a hash-based cryptosystem is an essential candidate of a post-quantum cryptosystem, the proposed hash-based chameleon signature scheme would be a promising alternative to the number of theoretic-based methods. Furthermore, the proposed method is key exposure-free and satisfies the security requirements such as semantic security, non-transferability, and unforgeability.


Asunto(s)
Seguridad Computacional , Privacidad
13.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009619

RESUMEN

The COVID-19 pandemic has spread to almost all countries of the World and affected people both mentally and economically. The primary motivation of this research is to construct a model that takes reviews or evaluations from several people who are affected with COVID-19. As the number of cases has accelerated day by day, people are becoming panicked and concerned about their health. A good model may be helpful to provide accurate statistics in interpreting the actual records about the pandemic. In the proposed work, for sentimental analysis, a unique classifier named the Sentimental DataBase Miner algorithm (SADBM) is used to categorize the opinions and parallel processing, and is applied on the data collected from various online social media websites like Twitter, Facebook, and Linkedin. The accuracy of the proposed model is validated with trained data and compared with basic classifiers, such as logistic regression and decision tree. The proposed algorithm is executed on CPU as well as GPU and calculated the acceleration ratio of the model. The results show that the proposed model provides the best accuracy compared with the other two models, i.e., 96% (GPU).


Asunto(s)
COVID-19 , Algoritmos , Atención , Humanos , Pandemias , SARS-CoV-2
14.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531911

RESUMEN

The Internet of things (IoT), the Internet of vehicles, and blockchain technology have become very popular these days because of their versatility. Road traffic, which is increasing day by day, is causing more and more deaths worldwide. The world needs a product that would reduce the number of road accidents. This paper suggests combining IoT and blockchain technology to mitigate road hazards. The new intelligent transportation system technologies and the subsequent emergence of 5G technologies will be a blessing, delivering the necessary speed to ensure both safety and quality of service (QoS). Hashgraph technology, a distributed ledger technology is used to create communication networks between the different vehicles and other relevant parameters. Scheduling the requests according to the priorities for ensuring better QoS quotient can be effectively done using hashgraph. We demonstrated how the hashgraph outstrips other equivalents platforms. The proposed model was simulated using OMNeT++ with proper design and network description files. A hardware implementation of the proposed model was also done. Messages were transferred between the vehicles and prioritized using a hashgraph. This paper proposes an effective model in reducing the accidents in terms of parameters like speed, security, stability, and fairness.

15.
Sensors (Basel) ; 16(9)2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27626421

RESUMEN

Cognitive radio wireless sensor networks (CR-WSNs) have attracted a great deal of attention recently due to the emerging spectrum scarcity issue. This work attempts to provide a detailed analysis of the role of node clustering in CR-WSNs. We outline the objectives, requirements, and advantages of node clustering in CR-WSNs. We describe how a CR-WSN with node clustering differs from conventional wireless sensor networks, and we discuss its characteristics, architecture, and topologies. We survey the existing clustering algorithms and compare their objectives and features. We suggest how clustering issues and challenges can be handled.

16.
Sensors (Basel) ; 13(9): 11196-228, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23974152

RESUMEN

A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.


Asunto(s)
Inteligencia Artificial/tendencias , Redes de Comunicación de Computadores/instrumentación , Redes de Comunicación de Computadores/tendencias , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores/tendencias , Tecnología Inalámbrica/instrumentación , Tecnología Inalámbrica/tendencias , Cognición , Diseño de Equipo , Análisis de Falla de Equipo , Predicción , Ondas de Radio
17.
Sensors (Basel) ; 9(6): 4083-103, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22408514

RESUMEN

Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA