Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Nat Cardiovasc Res ; 3(9): 1083-1097, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223390

RESUMEN

The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.


Asunto(s)
Proliferación Celular , Histona Demetilasas con Dominio de Jumonji , Ácidos Cetoglutáricos , Infarto del Miocardio , Miocitos Cardíacos , Regeneración , Animales , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Animales Recién Nacidos , Células Cultivadas , Histonas/metabolismo , Ratones , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino
2.
Adv Sci (Weinh) ; : e2402805, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119832

RESUMEN

Acute kidney injury (AKI) is the sudden decrease in renal function that can be attributed to dysregulated reactive oxygen species (ROS) production and impaired mitochondrial function. Irisin, a type I membrane protein secreted by skeletal muscles in response to physical activity, has been reported to alleviate kidney damage through regulation of mitochondrial biogenesis and oxidative metabolism. In this study, a macrophage membrane-coated metal-organic framework (MCM@MOF) is developed as a nanocarrier for encapsulating irisin to overcome the inherent characteristics of irisin, including a short circulation time, limited kidney-targeting ability, and low membrane permeability. The engineered irisin-mediated biomimetic nanotherapeutics have extended circulation time and enhanced targeting capability toward injured kidneys due to the preservation of macrophage membrane proteins. The irisin-encapsulated biomimetic nanotherapeutics effectively mitigate acute ischemia-reperfusion injury by protecting mitochondrial function and modulating SOD2 levels in renal tubular epithelial cells. The present study provides novel insights to advance the development of irisin as a potential therapeutic approach for AKI.

3.
Hypertens Res ; 47(9): 2317-2336, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961282

RESUMEN

G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and ß-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through ß-arrestin.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Hipertensión , Humanos , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/fisiología , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Animales , Antihipertensivos/uso terapéutico , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Presión Sanguínea/fisiología , Transducción de Señal
4.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965251

RESUMEN

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Asunto(s)
Comunicación Autocrina , Presión Sanguínea , AMP Cíclico , Oligopéptidos , Transducción de Señal , Animales , Humanos , Ratones , AMP Cíclico/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Riñón/metabolismo , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo
5.
Am J Pathol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032602

RESUMEN

Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The results show that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.

6.
Nutr J ; 23(1): 65, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886740

RESUMEN

BACKGROUND: Time-restricted eating (TRE), a popular form of intermittent fasting, has shown benefits for improving metabolic diseases and cardiometabolic health. However, the effect of TRE in the regulation of blood pressure in primary hypertension remains unclear. METHODS: A 6-week randomized controlled trial was conducted, in which a total of 74 stage 1 primary hypertensive patients without high-risk were randomly assigned to Dietary Approaches to Stop Hypertension (DASH) group (n = 37) or DASH + TRE group (n = 37). Participants in the DASH + TRE group were instructed to consume their food within an 8-h window. Scientific research platform in We Chat application was used to track participants. The primary outcome was blood pressure. The secondary outcomes included body composition, cardiometabolic risk factors, inflammation-related parameters, urinary Na+ excretion, other clinical variables and safety outcomes. RESULTS: The reduction of systolic blood pressure and diastolic blood pressure were 5.595 ± 4.072 and 5.351 ± 5.643 mm Hg in the DASH group and 8.459 ± 4.260 and 9.459 ± 4.375 mm Hg in the DASH + TRE group. DASH + TRE group improved blood pressure diurnal rhythm. Subjects in DASH + TRE group had decreased extracellular water and increased urinary Na+ excretion. Furthermore, the decrease in blood pressure was associated with a reduction of extracellular water or increase in urinary Na+ excretion. In addition, safety outcomes such as nighttime hunger were also reported. CONCLUSION: Our study demonstrated that 8-h TRE + DASH diet caused a greater decrease in blood pressure in stage 1 primary hypertensive patients than DASH diet. This study may provide novel insights into the benefits of lifestyle modification in the treatment of primary hypertension. TRIAL REGISTRATION: https://www.chictr.org.cn/ (ChiCTR2300069393, registered on March 15, 2023).


Asunto(s)
Presión Sanguínea , Enfoques Dietéticos para Detener la Hipertensión , Hipertensión , Humanos , Femenino , Masculino , Enfoques Dietéticos para Detener la Hipertensión/métodos , Persona de Mediana Edad , Hipertensión/dietoterapia , Hipertensión/terapia , Ayuno , Adulto , Resultado del Tratamiento
7.
Redox Biol ; 72: 103129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574433

RESUMEN

AIMS: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function. CONCLUSION: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Péptidos Similares al Glucagón , Proteínas de la Membrana , Animales , Ratones , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Doxorrubicina/efectos adversos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Péptidos Similares al Glucagón/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos
8.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566123

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cardiomiopatías Diabéticas , Ferroptosis , Humanos , Animales , Ratones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Sirtuina 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Proteína p53 Supresora de Tumor , Miocitos Cardíacos
9.
PLoS One ; 19(2): e0295837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335214

RESUMEN

Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1ß and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.


Asunto(s)
Aterosclerosis , Inflamasomas , Ftalazinas , Piperazinas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Endoteliales/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Aterosclerosis/metabolismo , Interleucina-1beta/metabolismo
10.
JMIR Public Health Surveill ; 10: e46821, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265846

RESUMEN

BACKGROUND: Ischemic heart disease (IHD) is the leading cause of death among noncommunicable diseases worldwide, but data on current epidemiological patterns and associated risk factors are lacking. OBJECTIVE: This study assessed the global, regional, and national trends in IHD mortality and attributable risks since 1990. METHODS: Mortality data were obtained from the Global Burden of Disease 2019 Study. We used an age-period-cohort model to calculate longitudinal age curves (expected longitudinal age-specific rate), net drift (overall annual percentage change), and local drift (annual percentage change in each age group) from 15 to >95 years of age and estimate cohort and period effects between 1990 and 2019. Deaths from IHD attributable to each risk factor were estimated on the basis of risk exposure, relative risks, and theoretical minimum risk exposure level. RESULTS: IHD is the leading cause of death in noncommunicable disease-related mortality (118.1/598.8, 19.7%). However, the age-standardized mortality rate for IHD decreased by 30.8% (95% CI -34.83% to -27.17%) over the past 30 years, and its net drift ranged from -2.89% (95% CI -3.07% to -2.71%) in high sociodemographic index (SDI) region to -0.24% (95% CI -0.32% to -0.16%) in low-middle-SDI region. The greatest decrease in IHD mortality occurred in the Republic of Korea (high SDI) with net drift -6.06% (95% CI -6.23% to -5.88%), followed by 5 high-SDI nations (Denmark, Norway, Estonia, the Netherlands, and Ireland) and 2 high-middle-SDI nations (Israel and Bahrain) with net drift less than -5.00%. Globally, age groups of >60 years continued to have the largest proportion of IHD-related mortality, with slightly higher mortality in male than female group. For period and birth cohort effects, the trend of rate ratios for IHD mortality declined across successive period groups from 2000 to 2004 and birth cohort groups from 1985 to 2000, with noticeable improvements in high-SDI regions. In low-SDI regions, IHD mortality significantly declined in female group but fluctuated in male group across successive periods; sex differences were greater in those born after 1945 in middle- and low-middle-SDI regions and after 1970 in low-SDI regions. Metabolic risks were the leading cause of mortality from IHD worldwide in 2019. Moreover, smoking, particulate matter pollution, and dietary risks were also important risk factors, increasingly occurring at a younger age. Diets low in whole grains and legumes were prominent dietary risks in both male and female groups, and smoking and high-sodium diet mainly affect male group. CONCLUSIONS: IHD, a major concern, needs focused health care attention, especially for older male individuals and those in low-SDI regions. Metabolic risks should be prioritized for prevention, and behavioral and environmental risks should attract more attention to decrease IHD mortality.


Asunto(s)
Carga Global de Enfermedades , Fumar , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Instituciones de Salud , Investigación , Factores de Riesgo , Adolescente , Adulto Joven , Anciano
11.
Mol Med ; 29(1): 164, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049750

RESUMEN

BACKGROUND: Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-ß-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear. METHODS: To assess the protective effect of L-BAIBA against lung I/R injury, an animal model was generated by clamping the hilum of the left lung, followed by releasing the clamp in C57BL/6 mice. Mice with lung I/R injury were pre-treated or post-treated with L-BAIBA (150 mg/kg/day), given by gavage or intraperitoneal injection. Lung injury was assessed by measuring lung edema and analyzing blood gases. Inflammation was assessed by measuring proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), and neutrophil infiltration of the lung was measured by myeloperoxidase activity. Molecular biological methods, including western blot and immunofluorescence, were used to detect potential signaling mechanisms in A549 and BEAS-2B cells. RESULTS: We found that L-BAIBA can protect the lung from I/R injury by inhibiting ferroptosis, which depends on the up-regulation of the expressions of GPX4 and SLC7A11 in C57BL/6 mice. Additionally, we demonstrated that the Nrf-2 signaling pathway is key to the inhibitory effect of L-BAIBA on ferroptosis in A549 and BEAS-2B cells. L-BAIBA can induce the nuclear translocation of Nrf-2. Interfering with the expression of Nrf-2 eliminated the protective effect of L-BAIBA on ferroptosis. A screening of potential signaling pathways revealed that L-BAIBA can increase the phosphorylation of AMPK, and compound C can block the Nrf-2 nuclear translocation induced by L-BAIBA. The presence of compound C also blocked the protective effects of L-BAIBA on lung I/R injury in C57BL/6 mice. CONCLUSIONS: Our study showed that L-BAIBA protects against lung I/R injury via the AMPK/Nrf-2 signaling pathway, which could be a therapeutic target.


L-BAIBA upregulates the expression of GPX4 and SLC7A11 by activating the AMPK/Nrf-2/GPX4/SLC7A11 signaling pathway, thereby protecting against I/R-induced increase in ROS and ferroptosis in the lung.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Ratones Endogámicos C57BL , Pulmón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
12.
Clin Exp Hypertens ; 45(1): 2276029, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37943619

RESUMEN

BACKGROUND: Thrombospondins (TSPs) play important roles in several cardiovascular diseases. However, the association between circulating (plasma) thrombospondin 2 (TSP2) and essential hypertension remains unclear. The present study was aimed to investigate the association of circulating TSP2 with blood pressure and nocturnal urine Na+ excretion and evaluate the predictive value of circulating TSP2 in subjects with hypertension. METHODS AND RESULTS: 603 newly diagnosed essential hypertensive subjects and 508 healthy subjects were preliminarily screened, 47 healthy subjects and 40 newly diagnosed essential hypertensive subjects without any chronic diseases were recruited. The results showed that the levels of circulating TSP2 were elevated in essential hypertensive subjects. The levels of TSP2 positively associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and other clinical parameters, including homeostasis model assessment of insulin resistance (HOMA-IR), brachial-ankle pulse wave velocity, and serum triglycerides, but negatively associated with nocturnal urine Na+ concentration and excretion and high-density lipoprotein cholesterol. Results of multiple linear regressions showed that HOMA-IR and nocturnal Na+ excretion were independent factors related to circulating TSP2. Mantel-Haenszel chi-square test displayed linear relationships between TSP2 and SBP (χ2 = 35.737) and DBP (χ2 = 26.652). The area under receiver operating characteristic curve (AUROC) of hypertension prediction was 0.901. CONCLUSION: Our study suggests for the first time that the circulating levels of TSP2 may be a novel potential biomarker for essential hypertension. The association between TSP2 and blood pressure may be, at least in part, related to the regulation of renal Na+ excretion, insulin resistance, and/or endothelial function.


Asunto(s)
Hipertensión , Resistencia a la Insulina , Humanos , Índice Tobillo Braquial , Análisis de la Onda del Pulso , Trombospondinas , Sodio , Presión Sanguínea , Hipertensión Esencial/complicaciones , Biomarcadores
13.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762126

RESUMEN

Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.


Asunto(s)
Dopamina , Inflamación , Humanos , Presión Sanguínea , Transporte Iónico , Radiofármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
14.
Acta Pharm Sin B ; 13(9): 3756-3769, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719375

RESUMEN

Myocardial dysfunction is the most serious complication of sepsis. Sepsis-induced myocardial dysfunction (SMD) is often associated with gastrointestinal dysfunction, but its pathophysiological significance remains unclear. The present study found that patients with SMD had higher plasma gastrin concentrations than those without SMD. In mice, knockdown of the gastrin receptor, cholecystokinin B receptor (Cckbr), aggravated lipopolysaccharide (LPS)-induced cardiac dysfunction and increased inflammation in the heart, whereas the intravenous administration of gastrin ameliorated SMD and cardiac injury. Macrophage infiltration plays a significant role in SMD because depletion of macrophages by the intravenous injection of clodronate liposomes, 48 h prior to LPS administration, alleviated LPS-induced cardiac injury in Cckbr-deficient mice. The intravenous injection of bone marrow macrophages (BMMs) overexpressing Cckbr reduced LPS-induced myocardial dysfunction. Furthermore, gastrin treatment inhibited toll-like receptor 4 (TLR4) expression through the peroxisome proliferator-activated receptor α (PPAR-α) signaling pathway in BMMs. Thus, our findings provide insights into the mechanism of the protective role of gastrin/CCKBR in SMD, which could be used to develop new treatment modalities for SMD.

15.
Yale J Biol Med ; 96(1): 95-105, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009199

RESUMEN

Essential hypertension is caused by the interaction of genetic, behavioral, and environmental factors. Abnormalities in the regulation of renal ion transport cause essential hypertension. The renal dopaminergic system, which inhibits sodium transport in all the nephron segments, is responsible for at least 50% of renal sodium excretion under conditions of moderate sodium excess. Dopaminergic signals are transduced by two families of receptors that belong to the G protein-coupled receptor (GPCR) superfamily. D1-like receptors (D1R and D5R) stimulate, while D2-like receptors (D2R, D3R, and D4R) inhibit adenylyl cyclases. The dopamine receptor subtypes, themselves, or by their interactions, regulate renal sodium transport and blood pressure. We review the role of the D1R and D3R and their interaction in the natriuresis associated with volume expansion. The D1R- and D3R-mediated inhibition of renal sodium transport involves PKA and PKC-dependent and -independent mechanisms. The D3R also increases the degradation of NHE3 via USP-mediated ubiquitinylation. Although deletion of Drd1 and Drd3 in mice causes hypertension, DRD1 polymorphisms are not always associated with human essential hypertension and polymorphisms in DRD3 are not associated with human essential hypertension. The impaired D1R and D3R function in hypertension is related to their hyper-phosphorylation; GRK4γ isoforms, R65L, A142V, and A486V, hyper-phosphorylate and desensitize D1R and D3R. The GRK4 locus is linked to and GRK4 variants are associated with high blood pressure in humans. Thus, GRK4, by itself, and by regulating genes related to the control of blood pressure may explain the "apparent" polygenic nature of essential hypertension.


Asunto(s)
Hipertensión , Humanos , Ratones , Animales , Hipertensión/genética , Riñón/metabolismo , Presión Sanguínea , Dopamina/metabolismo , Hipertensión Esencial/genética , Hipertensión Esencial/complicaciones , Hipertensión Esencial/metabolismo , Sodio/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo
16.
Cardiol Discov ; 3(1): 24-29, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36969984

RESUMEN

Dopamine, via its receptors, plays a vital role in the maintenance of blood pressure by modulating renal sodium transport. However, the role of the D4 dopamine receptor (D4 receptor) in renal proximal tubules (PRTs) is still unclear. This study aimed to verify the hypothesis that activation of D4 receptor directly inhibits the activity of the Na+-K+-ATPase (NKA) in RPT cells. Methods: NKA activity, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels were measured in RPT cells treated with the D4 receptor agonist PD168077 and/or the D4 receptor antagonist L745870, the NO synthase inhibitor NG-nitro-L-arginine-methyl ester (L-NAME) or the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). Total D4 receptor expression and its expression in the plasma membrane were investigated by immunoblotting in RPT cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Results: Activation of D4 receptors with PD168077, inhibited NKA activity in RPT cells from WKY rats in a concentration- and time-dependent manner. The inhibitory effect of PD168077 on NKA activity was prevented by the addition of the D4 receptor antagonist L745870, which by itself had no effect. The NO synthase inhibitor L-NAME and the soluble guanylyl cyclase inhibitor ODQ, which by themselves had no effect on NKA activity, eliminated the inhibitory effect of PD168077 on NKA activity. Activation of D4 receptors also increased NO levels in the culture medium and cGMP levels in RPT cells. However, the inhibitory effect of D4 receptors on NKA activity was absent in RPT cells from SHRs, which could be related to decreased plasma membrane expression of D4 receptors in SHR RPT cells. Conclusions: Activation of D4 receptors directly inhibits NKA activity via the NO/cGMP signaling pathway in RPT cells from WKY rats but not SHRs. Aberrant regulation of NKA activity in RPT cells may be involved in the pathogenesis of hypertension.

17.
Free Radic Biol Med ; 200: 59-72, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36868433

RESUMEN

Epidemiological studies show an association between low body selenium and the risk of hypertension. However, whether selenium deficiency causes hypertension remains unknown. Here, we report that Sprague-Dawley rats fed a selenium-deficient diet for 16 weeks developed hypertension, accompanied with decreased sodium excretion. The hypertension of selenium-deficient rats was associated with increased renal angiotensin II type 1 receptor (AT1R) expression and function that was reflected by the increase in sodium excretion after the intrarenal infusion of the AT1R antagonist candesartan. Selenium-deficient rats had increased systemic and renal oxidative stress; treatment with the antioxidant tempol for 4 weeks decreased the elevated blood pressure, increased sodium excretion, and normalized renal AT1R expression. Among the altered selenoproteins in selenium-deficient rats, the decrease in renal glutathione peroxidase 1 (GPx1) expression was most prominent. GPx1, via regulation of NF-κB p65 expression and activity, was involved in the regulation of renal AT1R expression because treatment with dithiocarbamate (PDTC), an NF-κB inhibitor, reversed the up-regulation of AT1R expression in selenium-deficient renal proximal tubule (RPT) cells. The up-regulation of AT1R expression with GPx1 silencing was restored by PDTC. Moreover, treatment with ebselen, a GPX1 mimic, reduced the increased renal AT1R expression, Na+-K+-ATPase activity, hydrogen peroxide (H2O2) generation, and the nuclear translocation of NF-κB p65 protein in selenium-deficient RPT cells. Our results demonstrated that long-term selenium deficiency causes hypertension, which is due, at least in part, to decreased urine sodium excretion. Selenium deficiency increases H2O2 production by reducing GPx1 expression, which enhances NF-κB activity, increases renal AT1R expression, causes sodium retention and consequently increases blood pressure.


Asunto(s)
Hipertensión , Selenio , Animales , Ratas , Peróxido de Hidrógeno , Hipertensión/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Selenio/deficiencia , Sodio
18.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36945458

RESUMEN

Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.

19.
Mol Nutr Food Res ; 67(7): e2200589, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36726048

RESUMEN

SCOPE: Long-term high-fat diet (HFD) causes insulin resistance, which is a primary etiological factor in the development of obesity and type 2 diabetes mellitus. Impaired insulin clearance is not only a consequence but also a cause of insulin resistance. The kidney is a major site of insulin clearance, where the insulin-degrading enzyme (IDE) plays a vital role in the proximal tubule. Thus, the study investigates the role of renal IDE in the regulation of insulin resistance in HFD-induced obese mice. METHODS AND RESULTS: Twenty four-weeks of HFD in C57BL/6 mice causes insulin resistance and impaires insulin clearance, accompanied by a decrease in renal IDE expression and activity. Palmitic acid decreases IDE mRNA and protein expressions in HK-2 cells. RNA-Seq analysis found that the PPAR pathway is involved. 24-weeks of HFD decreases renal PPARγ, but not PPARα or PPARß/δ mRNA expression. The inhibition of IDE expression by palmitic acid is prevented by the PPARγ agonist rosiglitazone. The amount of PPARγ bound to the promoters of IDE is decreased in palmitic acid-treated cells. Rosiglitazone improves insulin clearance and insulin resistance and increases renal IDE expression in HFD fed-mice. CONCLUSION: Long-term HFD decreases renal IDE expression and activity, and causes insulin resistance, which involves PPARγ.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulisina , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Insulisina/genética , Insulisina/metabolismo , Diabetes Mellitus Tipo 2/etiología , Ácido Palmítico/farmacología , Ratones Endogámicos C57BL , Insulina/metabolismo , Riñón/metabolismo , Ratones Obesos , ARN Mensajero/metabolismo
20.
Kidney Int ; 103(4): 719-734, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669643

RESUMEN

Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/complicaciones , Muerte Celular , Regulación hacia Abajo , Riñón/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Acoplados a Proteínas G/genética , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA