Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Instrum Technol ; 55(2): 69-84, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043008

RESUMEN

To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).


Asunto(s)
United States Food and Drug Administration , Humanos , Estados Unidos
2.
Sci Adv ; 5(10): eaax6973, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31692752

RESUMEN

The dynamic characterization of water multilayers on oxide surfaces is hard to achieve by currently available techniques. Despite this, there is an increasing interest in the evolution of water nanostructures on oxides to fully understand the complex dynamics of ice nucleation and growth in natural and artificial environments. Here, we report the in situ detection of the dynamic evolution of nanoscale water layers on an amorphous oxide surface probed by optical resonances. In the water nanolayer growth process, we find an initial nanocluster morphology that turns into a planar layer beyond a critical thickness. In the reverse process, the planar water film converts to nanoclusters, accompanied by a transition from a planar amorphous layer to crystalline nanoclusters. Our results are explained by a simple thermodynamic model as well as kinetic considerations. Our work represents an approach to reveal the nanostructure and dynamics at the water-oxide interface using resonant light probing.

3.
Nanoscale ; 8(18): 9498-503, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27102146

RESUMEN

Luminescent nanoparticles (NPs) are deposited onto two dimensional (2D) pre-strained TiO2 nanomembranes by spin-coating. After rolling up the 2D differentially strained TiO2 nanomembranes into 3D microtube structures, the NPs are embedded within the tube windings. The embedded NPs serve as a light source for optical whispering-gallery-mode resonances under laser excitation, and therefore allow the TiO2 microtube to work as an active microcavity operating in emission mode. The spectral range of resonant modes can be tuned from the visible to the near infrared by embedding the proper NPs in the TiO2 tube wall. Rolled-up TiO2 microcavities combined with luminescent NPs could offer interesting opportunities in a variety of research fields, such as bio- and nanophotonics, optoelectronics, and optofluidics.

4.
Curr Eye Res ; 40(10): 969-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25621973

RESUMEN

An introduction to the history of intraocular lenses (IOLs) is given, leading up to modern hydrophobic examples. The roles of hydrophobicity, hygroscopy, materials chemistry, and edge design are discussed in the context of IOLs. The four major types of IOL materials are compared in terms of their chemistry and biocompatibility. An example of a modern "hydrophobic" acrylic polymer with higher water content is discussed in detail.


Asunto(s)
Materiales Biocompatibles , Lentes Intraoculares , Dispersión de Radiación , Vacuolas , Materiales Biocompatibles/química , Deslumbramiento , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Implantación de Lentes Intraoculares , Luz , Facoemulsificación , Polietilenglicoles/química
5.
Opt Lett ; 39(21): 6335-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361348

RESUMEN

We present a detailed investigation of the resonator properties of high-quality rolled-up SiO2 optical microtubes reinforced by atomic layer deposition. The evolution of the resonant modes with increasing film thickness and the transition to a multimode regime, including higher order radial modes, is discussed. Measurements and simulations show that the higher order modes exhibit high optical quality and an increased extension of the evanescent field from the resonator into the surrounding matrix, making them a promising solution for future on-chip sensor applications with increased sensitivity.

6.
Sci Rep ; 4: 4647, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24732294

RESUMEN

Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g(-1) at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

7.
Opt Lett ; 39(2): 189-92, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562103

RESUMEN

The fabrication of high-quality-factor polycrystalline TiO2 vertically rolled-up microcavities (VRUMs) by the controlled release of differentially strained TiO2 bilayered nanomembranes, operating at both telecom and visible wavelengths, is reported. Optical characterization of these resonators reveals quality factors as high as 3.8×10³ in the telecom wavelength range (1520-1570 nm) by interfacing a TiO2 VRUMs with a tapered optical fiber. In addition, a splitting in the fundamental modes is experimentally observed due to the broken rotational symmetry in our resonators. This mode splitting indicates coupling between clockwise and counterclockwise traveling whispering gallery modes of the VRUMs. Moreover, we show that our biocompatible rolled-up TiO2 resonators function at several positions along the tube, making them promising candidates for multiplexing and biosensing applications.

8.
J Mater Chem C Mater ; 2(29): 5892-5901, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25580249

RESUMEN

Because of its unique properties, titania (TiO2) represents a promising candidate in a wide variety of research fields. In this paper, some of the properties and potential applications of titania within rolled-up nanotechnology are explored. It is shown how the structural and optical properties of rolled titania microtubes can be controlled by properly tuning the microfabrication parameters. The rolling up of titania films on different sacrificial layers and containing different shapes, achieving a control on the diameter of the fabricated titania microtubes, is presented. In order to obtain the more photoactive crystalline form of titania, one during-fabrication and two post-fabrication methods are demonstrated. Interesting applications in the fields of photocatalysis and photonics are suggested: the use of titania rolled-up microtubes as micromotors and optical microresonators is presented.

9.
Phys Rev Lett ; 107(14): 143902, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107195

RESUMEN

The spontaneous emission decay dynamics of nanocrystal quantum dots embedded into biotemplated titania photonic crystals with a diamond-based lattice are investigated. Modification of the decay rate of quantum dot emission over wide frequency bandwidths in the visible by the photonic crystals is observed. Frequency-dependent analysis reveals both inhibition and enhancement of emission with a radiative lifetime variation by more than a factor of 10.

11.
Appl Spectrosc ; 61(12): 1373-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18198031

RESUMEN

Photothermal lens measurements and finite element modeling are used to examine the physical changes taking place in optical filter glasses. Colored glass and neutral density filters are found to have a strong positive temperature-dependent refractive index change. The overall positive refractive index change is thought to be a consequence of complex counteracting factors: stress-induced birefringence, polarizability, structural network, and temperature-dependent carrier density changes in the CdSxSe1-x microcrystals that produce optical properties of these glasses. Finite element analysis (FEA) modeling is used to examine the temperature profiles and the goodness of the semi-infinite thermal diffusion solution normally used for thermal lens experiments. The results of FEA were used to optimize experimental parameters and calculate values of dn/dT for the glass by comparison with standard liquid samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA