Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Tech ; 32(3): 134-136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35027871

RESUMEN

At this writing, over 100 million people have tested positive for Corona Virus Disease-19 (COVID-19), and the global death toll from this disease has reached nearly 3 million. Despite the many tests currently available, we have not yet achieved the testing capacity needed to limit the spread of the virus and mitigate suffering worldwide. We have developed the One Hour COVID Test to address this challenge. Our test leverages an easy-to-use, commercially available oral swab kit for sample collection paired with a novel RNA processing protocol and a simple colorimetric assay that requires minimal equipment. The test can be easily scaled via automation and takes 1 h from sample collection to result.


Asunto(s)
COVID-19 , Colorimetría , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Tiempo de Protrombina , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
3.
J Biomol Tech ; 28(1): 31-39, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28337070

RESUMEN

The Extreme Microbiome Project (XMP) is a project launched by the Association of Biomolecular Resource Facilities Metagenomics Research Group (ABRF MGRG) that focuses on whole genome shotgun sequencing of extreme and unique environments using a wide variety of biomolecular techniques. The goals are multifaceted, including development and refinement of new techniques for the following: 1) the detection and characterization of novel microbes, 2) the evaluation of nucleic acid techniques for extremophilic samples, and 3) the identification and implementation of the appropriate bioinformatics pipelines. Here, we highlight the different ongoing projects that we have been working on, as well as details on the various methods we use to characterize the microbiome and metagenome of these complex samples. In particular, we present data of a novel multienzyme extraction protocol that we developed, called Polyzyme or MetaPolyZyme. Presently, the XMP is characterizing sample sites around the world with the intent of discovering new species, genes, and gene clusters. Once a project site is complete, the resulting data will be publically available. Sites include Lake Hillier in Western Australia, the "Door to Hell" crater in Turkmenistan, deep ocean brine lakes of the Gulf of Mexico, deep ocean sediments from Greenland, permafrost tunnels in Alaska, ancient microbial biofilms from Antarctica, Blue Lagoon Iceland, Ethiopian toxic hot springs, and the acidic hypersaline ponds in Western Australia.


Asunto(s)
Microbiología Ambiental , Microbiota/genética , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Ambientes Extremos , Metagenoma , Tipificación Molecular/normas , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , Estándares de Referencia , Análisis de Secuencia de ADN/normas
4.
Cell Syst ; 1(1): 72-87, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26594662

RESUMEN

The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station's history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of cities.

8.
Methods Enzymol ; 489: 147-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21266229

RESUMEN

The unfolded protein response (UPR) is a set of pathways activated by the accumulation of improperly folded proteins. It can be triggered by a broad range of stressful conditions which disrupt successful maturation of proteins in the endoplasmic reticulum (ER) by interfering with proper folding, assembly, and posttranslational modification. Recent studies have demonstrated the induction of ER stress and activation of elements of the UPR in human lung cells exposed to diesel exhaust particles, airborne particulate matter, and tobacco smoke. ER stress has been found to play a role in a variety of lung maladies, including cancer, infections, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Lung cancer is one of the few diseases where the etiological agent, cigarette smoke (CS), is well known. It is, therefore, desirable to measure dysregulation of the UPR pathway in samples representing both the earliest events (cells exposed to CS in vitro) and in clinical samples from healthy smokers and individuals with smoking-related lung diseases. We hereby provide a detailed description of methods for assessing the degree and timing of cellular response to CS with respect to the three major UPR pathways.


Asunto(s)
Retículo Endoplásmico/fisiología , Fumar , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 6/metabolismo , Células Cultivadas , Humanos , Citometría de Barrido por Láser , Análisis por Matrices de Proteínas , Pliegue de Proteína , Humo , eIF-2 Quinasa/metabolismo
9.
Cytometry A ; 77(11): 999-1007, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20939035

RESUMEN

The imaging analytical capabilities of laser scanning cytometer (LSC) have been used to assess morphological features considered to be typical of the senescent phenotype. The characteristic "flattening" of senescent cells was reflected by the decline in the density of staining (intensity of maximal pixel) of DNA-associated fluorescence [4,6-diamidino-2-phenylindole (DAPI)] paralleled by an increase in nuclear size (area). The decrease in ratio of maximal pixel to nuclear area was even more sensitive senescence biomarker than the change in maximal pixel or nuclear area, each alone. The saturation cell density at plateau phase of growth recorded by LSC was found to be dramatically decreased in cultures of senescent cells, thereby also serving as an additional marker. The induction of cyclin dependent kinase inhibitors p21(WAF1) and p27(KIP1) and γH2AX and activation of ATM markers of DNA damage response were measured in parallel with DNA/DAPI maximal pixel and nuclear area. These biomarker indices were expressed in quantitative terms by reporting them as a fraction of the respective controls. The effect of treatment of A549 and WI-38 cells with different concentrations of mitoxantrone (Mxt) and trichostatin A for various time periods was studied to assess the degree (depth) of cell senescence. Also assessed was the effect of 2-deoxy-D-glucose, the agent attenuating metabolic cell activity, on the depth of senescence induced by Mxt. A relationship between the ability of cells to synthesize RNA (incorporate 5-ethynyluridine) that leads to growth imbalance and induction of cell senescence was also studied. The data show that morphometric analysis of cellular attributes by LSC offers an attractive tool to detect cell senescence and measure its degree particularly in assessing effects of the factors that enhance or attenuate this process. This methodology is of importance in light of the evidence that cellular senescence is not only a biological process that is fundamental for organismal aging but also impedes formation of induced-pluripotent stem cells providing the barrier for neoplastic transformation and is the major mechanism of induction of reproductive cell death during treatment of solid tumors.


Asunto(s)
Senescencia Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Citometría de Barrido por Láser/métodos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Recuento de Células , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patología , Senescencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Colorantes Fluorescentes/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Indoles/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mitoxantrona/farmacología , beta-Galactosidasa/metabolismo
10.
Cell Cycle ; 9(11): 2170-6, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20404482

RESUMEN

Cigarette smoke (CS) is the major cause of lung cancer and contributes to the development of other malignancies. Attempts have been made to construct reduced toxicity cigarettes, presumed to have diminished genotoxic potential. One such product on the market is the tobacco and nicotine free (T&N-free) cigarette type made from lettuce and herbal extracts. We have recently developed a sensitive assay of the genotoxicity of CS based on cytometric analysis of induction of the DNA damage response (DDR) in normal human pulmonary endothelial or A549 pulmonary adenocarcinoma cells. In the present study, we observed that exposure of A549 cells to CS from T/N-free cigarettes induced a smoke-dose dependent DDR as evidenced by phosphorylation (activation) of the Ataxia telangiectasia mutated (ATM) protein kinase and of the histone H2AX (γH2AX). The extent of DDR induced by T&N-free smoke was distinctly greater than that induced by comparable doses of CS from reference cigarettes (2R4F) containing tobacco and nicotine. The pattern of DDR induced by T&N-free smoke was similar to that of 2R4F cigarettes in terms of the cell cycle phase specificity and involvement of reactive oxygen species (ROS). The data also imply that similar to 2R4F exposure of cells to T/N-free smoke leads to formation of double-strand DNA breaks (DSBs) resulting from collapse of replication forks upon collision with the primary ssDNA lesions induced by smoke. Since DSBs are potentially carcinogenic our data indicate that smoking tobacco and nicotine-free cigarettes is at least as hazardous as smoking cigarettes containing tobacco and nicotine.


Asunto(s)
Adenocarcinoma/metabolismo , Reparación del ADN , Neoplasias Pulmonares/metabolismo , Nicotiana , Humo , Adenocarcinoma/patología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Fase G1 , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/patología , Pruebas de Mutagenicidad , Nicotina/toxicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fase S , Proteínas Supresoras de Tumor/metabolismo
11.
Cytometry A ; 75(10): 840-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19658174

RESUMEN

Cigarette smoke (CS) is a major cause of lung cancer and a contributor to the development of a wide range of other malignancies. There is an acute need to develop a methodology that can rapidly assess the potential carcinogenic properties of the genotoxic agents present in CS. We recently reported that exposure of normal human bronchial epithelial cells (NHBEs) or A549 pulmonary carcinoma cells to CS induces the activation of ATM through its phosphorylation on Ser1981 and phosphorylation of histone H2AX on Ser139 (gammaH2AX) most likely in response to the formation of potentially carcinogenic DNA double-strand breaks (DSBs). To obtain a more complete view of the DNA damage response (DDR) we explored the correlation between ATM activation, H2AX phosphorylation, activation of Chk2 through its phosphorylation on Thr68, and phosphorylation of p53 on Ser15 in NHBE and A549 cell exposed to CS. Multiparameter analysis by laser scanning cytometry made it possible to relate these DDR events, detected immunocytochemically, with cell cycle phase. The CS-dose-dependent induction and increase in the extent of phosphorylation of ATM, Chk2, H2AX, and p53 were seen in both cell types. ATM and Chk2 were phosphorylated approximately 1 h prior to phosphorylation of H2AX and p53. The dephosphorylation of ATM, Chk2, and H2AX was seen after 2 h following CS exposure. The dose-dependency and kinetics of DDR were essentially similar in both cell types, which provide justification for the use of A549 cells in the assessment of genotoxicity of CS in lieu of normal bronchial epithelial cells. The observation that DDR was more pronounced in S-phase cells is consistent with the mechanism of induction of DSBs occurring as a result of collision of replication forks with primary lesions such as DNA adducts that can be caused by CS-generated oxidants. The cytometric assessment of CS-induced DDR provides a means to estimate the genotoxicity of CS and to explore the mechanisms of the response as a function of cell cycle phase and cell type.


Asunto(s)
Bronquios/citología , Daño del ADN , Células Epiteliales/metabolismo , Citometría de Barrido por Láser/métodos , Fumar/efectos adversos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/enzimología , Histonas/metabolismo , Humanos , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
Mutat Res ; 678(1): 43-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19591958

RESUMEN

Differentiation among American cigarettes relies primarily on the use of proprietary tobacco blends, menthol, tobacco substitutes, paper porosity, paper additives, and filter ventilation. These characteristics substantially alter per cigarette yields of tar and nicotine in standardized protocols promulgated by government agencies. However, due to compensatory alterations in smoking behavior to sustain a preferred nicotine dose (e.g., by increasing puff frequency, inhaling more deeply, smoking more cigarettes per day, or blocking filter ventilation holes), smokers actually inhale similar amounts of tar and nicotine regardless of any cigarette variable, supporting epidemiological evidence that all brands have comparable disease risk. Consequently, it would be advantageous to develop assays that realistically compare cigarette smoke (CS)-induced genotoxicity regardless of differences in cigarette construction or smoking behavior. One significant indicator of potentially carcinogenic DNA damage is double strand breaks (DSBs), which can be monitored by measuring Ser 139 phosphorylation on histone H2AX. Previously we showed that phosphorylation of H2AX (defined as gammaH2AX) in exposed lung cells is proportional to CS dose. Thus, we proposed that gammaH2AX may be a viable biomarker for evaluating genotoxic risk of cigarettes in relation to actual nicotine/tar delivery. Here we tested this hypothesis by measuring gammaH2AX levels in A549 human lung cells exposed to CS from a range of commercial cigarettes using various smoking regimens. Results show that gammaH2AX induction, a critical event of the mammalian DNA damage response, provides an assessment of CS-induced DNA damage independent of smoking topography or cigarette type. We conclude that gammaH2AX induction shows promise as a genotoxic bioassay offering specific advantages over the traditional assays for the evaluation of conventional and nonconventional tobacco products.


Asunto(s)
Biomarcadores/análisis , Daño del ADN , Histonas/análisis , Pruebas de Mutagenicidad/métodos , Nicotina/toxicidad , Breas/toxicidad , Línea Celular Tumoral , Humanos , Riesgo , Fumar/efectos adversos
13.
BMC Cancer ; 8: 229, 2008 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-18694499

RESUMEN

BACKGROUND: Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. METHODS: Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. RESULTS: We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2 alpha) or phosphorylation (i.e., phospho-eIF2 alpha) in a majority of human lung cancers. CONCLUSION: These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2 alpha and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.


Asunto(s)
Retículo Endoplásmico/patología , Neoplasias Pulmonares/patología , Pulmón/patología , Fumar/efectos adversos , Adulto , Anciano , Ciclo Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Inmunohistoquímica/métodos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Persona de Mediana Edad , Estrés Oxidativo , Desnaturalización Proteica , Humo/efectos adversos
14.
BMC Cell Biol ; 8: 26, 2007 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-17594478

RESUMEN

BACKGROUND: In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs) such as ataxia telangiectasia mutated (ATM), ATM-and Rad-3 related (ATR) kinase, or by DNA dependent protein kinase (DNA-PKcs). When DNA damage primarily involves formation of DNA double-strand breaks (DSBs), H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE) to cigarette smoke (CS) induced phosphorylation of H2AX. RESULTS: We report here that H2AX phosphorylation in A549 cells induced by CS was accompanied by activation of ATM, as revealed by ATM phosphorylation on Ser1981 (ATM-S1981P) detected immunocytochemically and by Western blotting. No cell cycle-phase specific differences in kinetics of ATM activation and H2AX phosphorylation were observed. When cells were exposed to CS from cigarettes with different tobacco and filter combinations, the expression levels of ATM-S1981P correlated well with the increase in expression of phosphorylated H2AX (gammaH2AX) (R = 0.89). In addition, we note that while CS-induced gammaH2AX expression was localized within discrete foci, the activated ATM was distributed throughout the nucleoplasm. CONCLUSION: These data implicate ATM as the PIKK that phosphorylates H2AX in response to DNA damage caused by CS. Based on current understanding of ATM activation, expression and localization, these data would suggest that, in addition to inducing potentially carcinogenic DSB lesions, CS may also trigger other types of DNA lesions and cause chromatin alterations. As checkpoint kinase (Chk) 1, Chk2 and the p53 tumor suppressor gene are known to be phosphorylated by ATM, the present data indicate that exposure to CS may lead to their phosphorylation, with the downstream consequences related to the halt in cell cycle progression and increased propensity to undergo apoptosis. Defining the nature and temporal sequence of molecular events that are disrupted by CS through activation and eventual dysregulation of normal defense mechanisms such as ATM and its downstream effectors may allow a more precise understanding of how CS promotes cancer development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Humo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Línea Celular Tumoral , Activación Enzimática , Humanos , Fosforilación , Fosfoserina/metabolismo , Nicotiana
15.
Int J Oncol ; 28(6): 1491-505, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16685450

RESUMEN

DNA double-strand breaks (DSBs) are potentially mutagenic/carcinogenic lesions. Induction of DSBs triggers phosphorylation of histone H2AX on Ser-139. Phosphorylated H2AX (gammaH2AX) can be detected immunocytochemically, and the intensity of gammaH2AX immunofluorescence (IF), reflecting the number of gammaH2AX-IF foci per nucleus, reveals the frequency of DSBs. Using multiparameter cytometric analysis of gammaH2AX-IF, we previously observed that DSBs are induced in normal human bronchial epithelial (NHBE) and A549 pulmonary adenocarcinoma cells following exposure to cigarette smoke (CS) or smoke condensate. In the present study, we show that N-acetyl L-cysteine (NAC) and glutathione, both effective scavengers of free radicals, prevented induction of DSBs by CS in these cells. In contrast, the glutathione synthesis inhibitor, DL-Buthionine-[S,R]-sulfoximine (BSO), enhanced the induction of DSBs by CS. The observed reduction of DSBs by NAC correlated with protection of the reproductive capability (clonogenicity) of A549 cells treated with CS. The data implicate formation of free radicals by CS as factors generating DSBs and affecting cell survival. Interestingly, at the conditions of exposure to CS when clonogenicity was only moderately affected, S-phase cells showed significantly higher sensitivity in terms of induction of DSBs compared with G1 or G2M cells. In light of the evidence that CS increases oxidative stress and induces cell proliferation in the lungs of smokers, the high propensity of S-phase cells to develop DSBs upon exposure to CS has to be considered as a potentially pathogenic event in smoke-induced tumor development. This is the first report to reveal cell cycle-phase specificity in both the induction of DSBs by CS and their prevention by free radical scavengers. The detection of gammaH2AX to assess the induction of CS-induced DSBs and their relationship to cell cycle phase provides a convenient tool to explore approaches to protect cells from this type of genotoxic damage.


Asunto(s)
Daño del ADN , Pulmón/patología , Pulmón/fisiología , Mucosa Respiratoria/fisiología , Humo/efectos adversos , Línea Celular Tumoral , Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Histonas/efectos de los fármacos , Histonas/metabolismo , Humanos , Neoplasias Pulmonares , Fosfoproteínas/metabolismo , Mucosa Respiratoria/patología , Fumar , Tiourea/análogos & derivados , Tiourea/farmacología
16.
Cell Cycle ; 3(9): 1154-68, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15326394

RESUMEN

Gene expression patterns were assessed in normal human bronchial epithelial (NHBE) cells exposed to cigarette smoke condensates (CSC) from commercial cigarettes in order to develop a better understanding of the genomic impact of tobacco exposure, and to define biomarkers that can potentially discriminate tobacco-related effects and outcomes in a clinical setting. NHBE cells were treated with CSCs from two American brands for up to 12 hours in the presence of S9 microsomal fraction from Aroclor 1254-treated rats. High-density oligonucleotide microarrays coupled with a novel statistical analysis that relies on statistical significance levels rather than arbitrary fold-change differences was used to identify genes that undergo expression alterations upon treatment. Expression patterns of approximately 3700 genes were altered after CSC treatments. While a majority of these genes were affected by both CSCs, each condensate also affected a unique subset of approximately 1000 genes. An unexpected finding was that S9, required for metabolizing procarcinogens in CSCs to carcinogenic metabolites, also altered the expression of approximately 1700 genes. Exposure of NHBE cells to different CSCs alters the expression of a large set of genes that affect a common set of biological pathways including those relevant to carcinogenesis. Identification of CSC-affected genes and underlying biological processes may generate an atlas of molecular events that includes biomarkers of tobacco exposure and disease status in smokers. Finally, the finding that S9 affects the expression of a number of genes may have implications for various toxicogenetic assays currently used by regulatory agencies to evaluate harmful effects in exposed humans.


Asunto(s)
Bronquios/efectos de los fármacos , Carcinoma/inducido químicamente , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/inducido químicamente , Nicotiana/efectos adversos , Extractos Vegetales/efectos adversos , Adulto , Animales , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Bronquios/metabolismo , Bronquios/fisiopatología , Carcinoma/genética , Carcinoma/metabolismo , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Línea Celular , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Marcadores Genéticos/efectos de los fármacos , Marcadores Genéticos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA