Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 2061, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443751

RESUMEN

The defining features of Alzheimer's disease (AD) include alterations in protein aggregation, immunity, lipid metabolism, synapses, and learning and memory. Of these, lipid abnormalities are the least understood. Here, we investigate the role of Stearoyl-CoA desaturase (SCD), a crucial regulator of fatty acid desaturation, in AD pathogenesis. We show that inhibiting brain SCD activity for 1-month in the 3xTg mouse model of AD alters core AD-related transcriptomic pathways in the hippocampus, and that it concomitantly restores essential components of hippocampal function, including dendritic spines and structure, immediate-early gene expression, and learning and memory itself. Moreover, SCD inhibition dampens activation of microglia, key mediators of spine loss during AD and the main immune cells of the brain. These data reveal that brain fatty acid metabolism links AD genes to downstream immune, synaptic, and functional impairments, identifying SCD as a potential target for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
3.
Front Neurosci ; 15: 621076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841077

RESUMEN

The ventricular-subventricular zone (V-SVZ) is the principal neurogenic niche in the adult mammalian forebrain. Neural stem/progenitor cell (NSPC) activity within the V-SVZ is controlled by numerous of extrinsic factors, whose downstream effects on NSPC proliferation, survival and differentiation are transduced via a limited number of intracellular signaling pathways. Here, we investigated the relationship between age-related changes in NSPC output and activity of signaling pathways downstream of the epidermal growth factor receptor (EGFR), a major regulator of NSPC activity. Biochemical experiments indicated that age-related decline of NSPC activity in vivo is accompanied by selective deficits amongst various EGFR-induced signal pathways within the V-SVZ niche. Pharmacological loss-of-function signaling experiments with cultured NSPCs revealed both overlap and selectivity in the biological functions modulated by the EGFR-induced PI3K/AKT, MEK/ERK and mTOR signaling modules. Specifically, while all three modules promoted EGFR-mediated NSPC proliferation, only mTOR contributed to NSPC survival and only MEK/ERK repressed NSPC differentiation. Using a gain-of-function in vivo genetic approach, we electroporated a constitutively active EGFR construct into a subpopulation of quiescent, EGFR-negative neural stem cells (qNSCs); this ectopic activation of EGFR signaling enabled qNSCs to divide in 3-month-old early adult mice, but not in mice at middle-age or carrying familial Alzheimer disease mutations. Thus, (i) individual EGFR-induced signaling pathways have dissociable effects on NSPC proliferation, survival, and differentiation, (ii) activation of EGFR signaling is sufficient to stimulate qNSC cell cycle entry during early adulthood, and (iii) the proliferative effects of EGFR-induced signaling are dominantly overridden by anti-proliferative signals associated with aging and Alzheimer's disease.

4.
Life Sci Alliance ; 3(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32482782

RESUMEN

The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC-mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.


Asunto(s)
Ventrículos Cerebrales/metabolismo , Epitelio/metabolismo , Marcación de Gen , Factores de Crecimiento Nervioso/genética , Células-Madre Neurales/metabolismo , Prosencéfalo/metabolismo , Adulto , Células Madre Adultas/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Nicho de Células Madre/genética
5.
Front Neurosci ; 9: 407, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26576147

RESUMEN

A single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain. Using primary cultures of SVZ cells, we demonstrate that Epidermal Growth Factor (EGF) and Bone Morphogenetic Protein (BMP)-2 are particularly powerful pro- and anti-proliferative factors for SVZ-derived neural precursors. Dose-response experiments showed that when simultaneously exposed to both signals, BMP dominantly suppressed EGF-induced proliferation; moreover, this dominance extended to all parameters of neural precursor behavior tested, including inhibition of proliferation, modulation of cell cycle, promotion of differentiation, and increase of cell death. BMP's anti-proliferative effect did not involve inhibition of mTORC1 or ERK signaling, key mediators of EGF-induced proliferation, and had distinct stage-specific consequences, promoting TAP differentiation but NSC quiescence. In line with these in vitro data, in vivo experiments showed that exogenous BMP limits EGF-induced proliferation of TAPs while inhibition of BMP-SMAD signaling promotes activation of quiescent NSCs. These findings clarify the stage-specific effects of BMPs on SVZ neural precursors, and support a hierarchical model in which the anti-proliferative effects of BMP dominate over EGF proliferation signaling to constitutively drive TAP differentiation and NSC quiescence.

6.
Cell Stem Cell ; 17(4): 397-411, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26321199

RESUMEN

Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs.


Asunto(s)
Metabolismo de los Lípidos , Células-Madre Neurales , Prosencéfalo/metabolismo , Células Madre Adultas/metabolismo , Células Madre Adultas/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Autopsia , Proliferación Celular , Modelos Animales de Enfermedad , Espectrometría de Masas , Ratones , Análisis por Micromatrices , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Ácido Oléico/biosíntesis , Regeneración , Nicho de Células Madre
7.
Eur J Neurosci ; 37(12): 1978-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23773067

RESUMEN

In the brains of adult vertebrates, including humans, neurogenesis occurs in restricted niches where it maintains cellular turnover and cognitive plasticity. In virtually all species, however, aging is associated with a significant decline in adult neurogenesis. Moreover, an acceleration of neurogenic defects is observed in models of Alzheimer's disease and other neurodegenerative diseases, suggesting an involvement in aging- and disease-associated cognitive deficits. To gain insights into when, how and why adult neurogenesis decreases in the aging brain, we critically reviewed the scientific literature on aging of the rodent subventricular zone, the neurogenic niche of the adult forebrain. Our analysis revealed that deficits in the neurogenic pathway are largely established by middle age, but that there remains striking ambiguity in the underlying mechanisms, especially at the level of stem and progenitor cells. We identify and discuss several challenging issues that have contributed to these key gaps in our current knowledge. In the future, addressing these issues should help untangle the interactions between neurogenesis, aging and aging-associated diseases.


Asunto(s)
Envejecimiento/fisiología , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Prosencéfalo/citología , Enfermedad de Alzheimer/patología , Animales , Ratones , Ratas
8.
J Neurosci ; 32(43): 15012-26, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100423

RESUMEN

Adult forebrain neurogenesis is dynamically regulated. Multiple families of niche-derived cues have been implicated in this regulation, but the precise roles of key intracellular signaling pathways remain vaguely defined. Here, we show that mammalian target of rapamycin (mTOR) signaling is pivotal in determining proliferation versus quiescence in the adult forebrain neural stem cell (NSC) niche. Within this niche, mTOR complex-1 (mTORC1) activation displays stage specificity, occurring in transiently amplifying (TA) progenitor cells but not in GFAP+ stem cells. Inhibiting mTORC1 depletes the TA progenitor pool in vivo and suppresses epidermal growth factor (EGF)-induced proliferation within neurosphere cultures. Interestingly, mTORC1 inhibition induces a quiescence-like phenotype that is reversible. Likewise, mTORC1 activity and progenitor proliferation decline within the quiescent NSC niche of the aging brain, while EGF administration reactivates the quiescent niche in an mTORC1-dependent manner. These findings establish fundamental links between mTOR signaling, proliferation, and aging-associated quiescence in the adult forebrain NSC niche.


Asunto(s)
Envejecimiento , Diferenciación Celular/fisiología , Células-Madre Neurales/fisiología , Prosencéfalo/citología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Proteínas de Dominio Doblecortina , Embrión de Mamíferos , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microdisección , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neuropéptidos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Embarazo , Proteína S6 Ribosómica/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/genética , Transfección , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA