Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Physiol ; (5): 514-514, 2015.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1062899

RESUMEN

Impairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). In addition to arterial hypoxemic conditions in COPD, there is growing evidence that cerebral and muscle blood flow and oxygenation can be reduced during exercise in both isolated COPD and CHF. Compromised cardiac output due to impaired cardiopulmonary function/interactions and blood flow redistribution to the overloaded respiratory muscles (i.e., ↑work of breathing) may underpin these abnormalities. Unfortunately, COPD and CHF coexist in almost a third of elderly patients making these mechanisms potentially more relevant to exercise intolerance. In this context, it remains unknown whether decreased O2 delivery accentuates neuromuscular manifestations of central and peripheral fatigue in coexistent COPD-CHF. If this holds true, it is conceivable that delivering a low-density gas mixture (heliox) through non-invasive positive pressure ventilation could ameliorate cardiopulmonary...


Asunto(s)
Insuficiencia Cardíaca , Músculo Esquelético , Músculos Respiratorios , Obstrucción de las Vías Aéreas , Oxigenación
2.
Curr Anthropol ; 40(5): 567-594, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10539941

RESUMEN

Cooking is a human universal that must have had widespread effects on the nutrition, ecology, and social relationships of the species that invented it. The location and timing of its origins are unknown, but it should have left strong signals in the fossil record. We suggest that such signals are detectable at ca. 1.9 million years ago in the reduced digestive effort (e.g., smaller teeth) and increased supply of food energy (e.g., larger female body mass) of early Homo erectus. The adoption of cooking required delay of the consumption of food while it was accumulated and/or brought to a processing area, and accumulations of food were valuable and stealable. Dominant (e.g., larger) individuals (typically male) were therefore able to scrounge from subordinate (e.g., smaller) individuals (typically female) instead of relying on their own foraging efforts. Because female fitness is limited by access to resources (particularly energetic resources), this dynamic would have favored females able to minimize losses to theft. To do so, we suggest, females formed protective relationships with male co-defenders. Males would have varied in their ability or willingness to engage effectively in this relationship, so females would have competed for the best food guards, partly by extending their period of sexual attractiveness. This would have increased the numbers of matings per pregnancy, reducing the intensity of male intrasexual competition. Consequently, there was reduced selection for males to be relatively large. This scenario is supported by the fossil record, which indicates that the relative body size of males fell only once in hominid evolution, around the time when H. erectus evolved. Therefore we suggest that cooking was responsible for the evolution of the unusual human social system in which pair bonds are embedded within multifemale, multimale communities and supported by strong mutual and frequently conflicting sexual interest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA