Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(17): 4999-5002, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208018

RESUMEN

The generation of shaped laser beams, or structured light, is of interest in a wide range of fields, from microscopy to fundamental physics. There are several ways to make shaped beams, most commonly using spatial light modulators comprised of pixels of liquid crystals. These methods have limitations on the wavelength, pulse duration, and average power that can be used. Here we present a method to generate shaped light that can be used at any wavelength from the UV to IR, on ultrafast pulses, and a large range of optical powers. By exploiting the frequency difference between higher-order modes, a result of the Gouy phase, and cavity mode matching, we can selectively couple into a variety of pure and composite higher-order modes. Optical cavities are used as a spatial filter and then combined with sum-frequency generation in a nonlinear crystal as the output coupler to the cavity to create ultrafast, frequency comb structured light.

2.
J Comput Chem ; 40(22): 1969-1977, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31070815

RESUMEN

The mechanism used by the ubiquitin-conjugating enzyme, Ubc13, to catalyze ubiquitination is probed with three computational techniques: Born-Oppenheimer molecular dynamics, single point quantum mechanics/molecular mechanics energies, and classical molecular dynamics. These simulations support a long-held hypothesis and show that Ubc13-catalyzed ubiquitination uses a stepwise, nucleophilic attack mechanism. Furthermore, they show that the first step-the formation of a tetrahedral, zwitterionic intermediate-is rate limiting. However, these simulations contradict another popular hypothesis that supposes that the negative charge on the intermediate is stabilized by a highly conserved asparagine (Asn79 in Ubc13). Instead, calculated reaction profiles of the N79A mutant illustrate how charge stabilization actually increases the barrier to product formation. Finally, an alternate role for Asn79 is suggested by simulations of wild-type, N79A, N79D, and H77A Ubc13: it stabilizes the motion of the electrophile prior to the reaction, positioning it for nucleophilic attack. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Asparagina/química , Simulación de Dinámica Molecular , Teoría Cuántica , Enzimas Ubiquitina-Conjugadoras/química , Asparagina/metabolismo , Biocatálisis , Estructura Molecular , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA