Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Microbiol ; 32(4): 355-364, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37891023

RESUMEN

Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.


Asunto(s)
Gonorrea , Humanos , Neisseria gonorrhoeae , Porinas/metabolismo , Membrana Celular/metabolismo , Inmunidad
2.
Environ Microbiol ; 24(10): 4533-4546, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35837865

RESUMEN

Pseudomonas aeruginosa is an important Gram-negative pathogen with intrinsic resistance to many clinically used antibiotics. It is particularly troublesome in nosocomial infections, immunocompromised patients, and individuals with cystic fibrosis. Antimicrobial resistance (AMR) is a huge threat to global health, with a predicted 10 million people dying from resistant infections by 2050. A promising therapy for combatting AMR infections is phage therapy. However, more research is required to investigate mechanisms that may influence the efficacy of phage therapy. An important overlooked aspect is the impact of membrane lipid remodelling on phage binding ability. P. aeruginosa undergoes changes in membrane lipids when it encounters phosphorus stress, an environmental perturbation that is likely to occur during infection. Lipid changes include the substitution of glycerophospholipids with surrogate glycolipids and the over-production of ornithine-containing aminolipids. Given that membrane lipids are known to influence the structure and function of membrane proteins, we propose that changes in the composition of membrane lipids during infection may alter phage binding and subsequent phage infection dynamics. Consideration of such effects needs to be urgently prioritised in order to develop the most effective phage therapy strategies for P. aeruginosa infections.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Infecciones por Pseudomonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Glicerofosfolípidos , Glucolípidos , Humanos , Lípidos de la Membrana , Proteínas de la Membrana , Ornitina , Terapia de Fagos/métodos , Fósforo , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa
3.
Microbiology (Reading) ; 168(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35763318

RESUMEN

Neisseria gonorrhoeae, the gonococcus, is a pathogen of major public health concern, but sophisticated approaches to gene manipulation are limited for this species. For example, there are few methods for generating markerless mutations, which allow the generation of precise point mutations and deletions without introducing additional DNA sequence. Markerless mutations are central to studying pathogenesis, the spread of antimicrobial resistance (AMR) and for vaccine development. Here we describe the use of galK as a counter-selectable marker that can be used for markerless mutagenesis in N. gonorrhoeae. galK encodes galactokinase, an enzyme that metabolizes galactose in bacteria that can utilize it as a sole carbon source. GalK can also phosphorylate a galactose analogue, 2-deoxy-galactose (2-DOG), into a toxic, non-metabolisable intermediate, 2-deoxy-galactose-1-phosphate. We utilized this property of GalK to develop a markerless approach for mutagenesis in N. gonorrhoeae. We successfully deleted both chromosomally and plasmid-encoded genes, that are important for gonococcal vaccine development and studies of AMR spread. We designed a positive-negative selection cassette, based on an antibiotic resistance marker and galK, that efficiently rendered N. gonorrhoeae susceptible to growth on 2-DOG. We then adapted the galK-based counter-selection and the use of 2-DOG for markerless mutagenesis, and applied biochemical and phenotypic analyses to confirm the absence of target genes. We show that our markerless mutagenesis method for N. gonorrhoeae has a high success rate, and should be a valuable gene editing tool in the future.


Asunto(s)
Edición Génica , Neisseria gonorrhoeae , Galactosa/metabolismo , Mutagénesis , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Plásmidos/genética
4.
ISME J ; 15(11): 3303-3314, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34031546

RESUMEN

Pseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Antibacterianos/farmacología , Glucolípidos , Humanos , Fósforo , Pseudomonas aeruginosa/genética
5.
Environ Microbiol ; 23(9): 5069-5086, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33684254

RESUMEN

The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.


Asunto(s)
Burkholderia cenocepacia , Burkholderia cenocepacia/genética , Cromatografía Liquida , Humanos , Fósforo , Proteómica , Espectrometría de Masas en Tándem
6.
Sci Rep ; 10(1): 14838, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908165

RESUMEN

The Staphylococcus aureus type VII secretion system (T7SS) exports several proteins that are pivotal for bacterial virulence. The mechanisms underlying T7SS-mediated staphylococcal survival during infection nevertheless remain unclear. Here we report that S. aureus lacking T7SS components are more susceptible to host-derived antimicrobial fatty acids. Unsaturated fatty acids such as linoleic acid (LA) elicited an increased inhibition of S. aureus mutants lacking T7SS effectors EsxC, EsxA and EsxB, or the membrane-bound ATPase EssC, compared to the wild-type (WT). T7SS mutants generated in different S. aureus strain backgrounds also displayed an increased sensitivity to LA. Analysis of bacterial membrane lipid profiles revealed that the esxC mutant was less able to incorporate LA into its membrane phospholipids. Although the ability to bind labelled LA did not differ between the WT and mutant strains, LA induced more cell membrane damage in the T7SS mutants compared to the WT. Furthermore, proteomic analyses of WT and mutant cell fractions revealed that, in addition to compromising membranes, T7SS defects induce oxidative stress and hamper their response to LA challenge. Thus, our findings indicate that T7SS contribute to maintaining S. aureus membrane integrity and homeostasis when bacteria encounter antimicrobial fatty acids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Staphylococcus aureus/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
Comp Med ; 66(1): 52-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26884410

RESUMEN

Cardiovascular disease is a leading cause of death in captive chimpanzees and is often associated with myocardial fibrosis, which increases the risk of cardiac arrhythmias. In this case report, we present a 36-y-old male chimpanzee (Pan troglodytes) diagnosed with frequent ventricular premature complexes (VPC). We placed a subcutaneous implantable loop recorder for continual ECG monitoring to assess his arrhythmias without the confounding effects of anesthetics. During his initial treatment with the antiarrhythmia medication amiodarone, he developed thrombocytopenia, and the drug was discontinued. After reviewing other potential therapies for the treatment of cardiac arrhythmias, we elected to try acupuncture and laser therapy in view of the positive results and the lack of adverse side effects reported in humans. We used 2 well-known cardiac acupuncture sites on the wrist, PC6 (pericardium 6) and HT7 (heart 7), and evaluated the results of the therapy by using the ECG recordings from the implantable loop recorder. Although periodic increases in the animal's excitement level introduced confounding variables that caused some variation in the data, acupuncture and laser therapy appeared to decrease the mean number of VPC/min in this chimpanzee.


Asunto(s)
Terapia por Acupuntura/veterinaria , Enfermedades del Simio Antropoideo/diagnóstico , Enfermedades del Simio Antropoideo/terapia , Electrocardiografía Ambulatoria/veterinaria , Terapia por Láser/veterinaria , Pan troglodytes , Complejos Prematuros Ventriculares/veterinaria , Animales , Enfermedades del Simio Antropoideo/fisiopatología , Electrocardiografía Ambulatoria/instrumentación , Diseño de Equipo , Frecuencia Cardíaca , Masculino , Valor Predictivo de las Pruebas , Factores de Tiempo , Resultado del Tratamiento , Complejos Prematuros Ventriculares/diagnóstico , Complejos Prematuros Ventriculares/fisiopatología , Complejos Prematuros Ventriculares/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA