Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38317753

RESUMEN

Background: The World Health Organization (WHO)'s Essential Medicines List (EML) plays an important role in advocating for access to key treatments for conditions affecting people in all geographic settings. We applied our established drug repurposing methods to one EML agent, N-acetylcysteine (NAC), to identify additional uses of relevance to the global health community beyond its existing EML indication (acetaminophen toxicity). Methods: We undertook a phenome-wide association study (PheWAS) of a variant in the glutathione synthetase (GSS) gene in approximately 35,000 patients to explore novel indications for use of NAC, which targets glutathione. We then evaluated the evidence regarding biologic plausibility, efficacy, and safety of NAC use in the new phenotype candidates. Results: PheWAS of GSS variant R418Q revealed increased risk of several phenotypes related to non-acetaminophen induced acute liver failure (ALF), indicating that NAC may represent a therapeutic option for treating this condition. Evidence review identified practice guidelines, systematic reviews, clinical trials, retrospective cohorts and case series, and case reports. This evidence suggesting benefit of NAC use in this subset of ALF patients. The safety profile of NAC in this literature was also concordant with existing evidence on safety of this agent in acetaminophen-induced ALF. Conclusions: This body of literature indicates efficacy and safety of NAC in non-acetaminophen induced ALF. Given the presence of NAC on the EML, this medication is likely to be available across a range of resource settings; promulgating its use in this novel subset of ALF can provide healthcare professionals and patients with a valuable and safe complement to supportive care for this disease.

2.
J Clin Transl Sci ; 7(1): e29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845316

RESUMEN

Background: Many clinical trials leverage real-world data. Typically, these data are manually abstracted from electronic health records (EHRs) and entered into electronic case report forms (CRFs), a time and labor-intensive process that is also error-prone and may miss information. Automated transfer of data from EHRs to eCRFs has the potential to reduce data abstraction and entry burden as well as improve data quality and safety. Methods: We conducted a test of automated EHR-to-CRF data transfer for 40 participants in a clinical trial of hospitalized COVID-19 patients. We determined which coordinator-entered data could be automated from the EHR (coverage), and the frequency with which the values from the automated EHR feed and values entered by study personnel for the actual study matched exactly (concordance). Results: The automated EHR feed populated 10,081/11,952 (84%) coordinator-completed values. For fields where both the automation and study personnel provided data, the values matched exactly 89% of the time. Highest concordance was for daily lab results (94%), which also required the most personnel resources (30 minutes per participant). In a detailed analysis of 196 instances where personnel and automation entered values differed, both a study coordinator and a data analyst agreed that 152 (78%) instances were a result of data entry error. Conclusions: An automated EHR feed has the potential to significantly decrease study personnel effort while improving the accuracy of CRF data.

3.
Mol Cancer Ther ; 19(12): 2454-2464, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33033174

RESUMEN

Although new drug discoveries are revolutionizing cancer treatments, repurposing existing drugs would accelerate the timeline and lower the cost for bringing treatments to cancer patients. Our goal was to repurpose CPI211, a potent and selective antagonist of the thromboxane A2-prostanoid receptor (TPr), a G-protein-coupled receptor that regulates coagulation, blood pressure, and cardiovascular homeostasis. To identify potential new clinical indications for CPI211, we performed a phenome-wide association study (PheWAS) of the gene encoding TPr, TBXA2R, using robust deidentified health records and matched genomic data from more than 29,000 patients. Specifically, PheWAS was used to identify clinical manifestations correlating with a TBXA2R single-nucleotide polymorphism (rs200445019), which generates a T399A substitution within TPr that enhances TPr signaling. Previous studies have correlated 200445019 with chronic venous hypertension, which was recapitulated by this PheWAS analysis. Unexpectedly, PheWAS uncovered an rs200445019 correlation with cancer metastasis across several cancer types. When tested in several mouse models of metastasis, TPr inhibition using CPI211 potently blocked spontaneous metastasis from primary tumors, without affecting tumor cell proliferation, motility, or tumor growth. Further, metastasis following intravenous tumor cell delivery was blocked in mice treated with CPI211. Interestingly, TPr signaling in vascular endothelial cells induced VE-cadherin internalization, diminished endothelial barrier function, and enhanced transendothelial migration by tumor cells, phenotypes that were decreased by CPI211. These studies provide evidence that TPr signaling promotes cancer metastasis, supporting the study of TPr inhibitors as antimetastatic agents and highlighting the use of PheWAS as an approach to accelerate drug repurposing.


Asunto(s)
Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Estudio de Asociación del Genoma Completo/métodos , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/genética , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metástasis de la Neoplasia , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Tromboxanos/metabolismo
4.
Annu Rev Pharmacol Toxicol ; 60: 333-352, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337270

RESUMEN

The promise of drug repurposing is to accelerate the translation of knowledge to treatment of human disease, bypassing common challenges associated with drug development to be more time- and cost-efficient. Repurposing has an increased chance of success due to the previous validation of drug safety and allows for the incorporation of omics. Hypothesis-generating omics processes inform drug repurposing decision-making methods on drug efficacy and toxicity. This review summarizes drug repurposing strategies and methodologies in the context of the following omics fields: genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, phenomics, pregomics, and personomics. While each omics field has specific strengths and limitations, incorporating omics into the drug repurposing landscape is integral to its success.


Asunto(s)
Reposicionamiento de Medicamentos/métodos , Preparaciones Farmacéuticas/administración & dosificación , Animales , Toma de Decisiones , Desarrollo de Medicamentos/economía , Desarrollo de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos
5.
Cell Death Dis ; 9(2): 21, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343814

RESUMEN

Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antagonistas de Estrógenos/farmacología , Transducción de Señal/efectos de los fármacos , Compuestos de Anilina/farmacología , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fulvestrant/farmacología , Marcación de Gen , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Receptores de Estrógenos/metabolismo , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteína bcl-X/metabolismo
6.
Mol Cancer Res ; 15(3): 259-268, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28039357

RESUMEN

An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of MCL1 as compared with BCL2 or BCL2L1 (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα+ tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα+ breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured in situ using Mcl-1/Bim proximity ligation assays. Importantly, MCL1 gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of BCL2 or BCL2L1 and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1-selective inhibitors for targeted tumor cell killing.Implications: Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. Mol Cancer Res; 15(3); 259-68. ©2016 AACR.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteína bcl-X/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sulfonamidas/farmacología , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA