Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 85(3): 341-57, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16170636

RESUMEN

Cyanobacteria acclimate to environmental inorganic carbon (C(i)) concentrations through re-organisations of photosynthetic function and the induction of carbon concentrating mechanisms (CCMs), which alter and constrain their subsequent acclimation to changing light. We grew cells acclimated to high C(i) (4 mM) or low C(i) (0.02 mM), shifted them from 50 micromol m(-2) s(-1) to 500 micromol m(-2) s(-1), and quantified their photosynthetic performance in parallel with quantitation of allocations to key indicator macromolecules. Pigments cell(-1) declined, PsbA (PS II), AtpB (ATP Synthase), RbcL (Rubisco) and GlnA (Glutamine Synthetase) increased, and PsaC (PS I) remained stable through the light shift. The increase in these protein pools was slower and smaller in low C(i) cells, but acted in both cell types to re-normalise the electron fluxes through the catalytic complexes back toward values before the light shift (for PsbA and GlnA) or even below the initial flux per complex (for RbcL). In contrast, an increased electron flux per PsaC was sustained for at least 6 h after the increase in light. Initially, high levels of PS II cell(-1) and PS II connectivity in high C(i) cells caused a more rapid net photoinactivation of PS II in high C(i) cells than in low C(i) cells, depressing the rate of PS II-specific electron transport (PS II ETR) to levels similar to linear ETR (net O(2) evolution minus respiration). In low C(i) cells, PS II ETR remained in excess of linear ETR and may have helped maintain CCM activity. The pool sizes of PsbA, AtpB and GlnA correlated with cellular growth rate, and changed at similar rates in high C(i) and low C(i) cells when expressed on a generational rather than chronological timescale, which has implications for differing ecology of high and low C(i) cells under variable natural light.


Asunto(s)
Aclimatación/fisiología , Carbono/metabolismo , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Synechococcus/metabolismo , Synechococcus/efectos de la radiación , Clorofila/metabolismo , Transporte de Electrón , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Ficocianina/metabolismo , Synechococcus/genética , Regulación hacia Arriba
2.
Arch Microbiol ; 183(3): 190-202, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15726330

RESUMEN

Synechococcus elongatus strain PCC7942 cells were grown in high or low environmental concentrations of inorganic C (high-C(i), low-C(i)) and subjected to a light shift from 50 micromol m(-2) s(-1) to 500 micromol m(-2) s(-1). We quantified photosynthetic reductant (O(2) evolution) and molar cellular contents of phycobilisomes, PSII, PSI, and ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through the light shift. Upon the increase in light, small initial relative decreases in phycobilisomes per cell resulted from near cessation of phycobilisome synthesis and their dilution into daughter cells. Thus, allocation of reductant to phycobilisome synthesis dropped fivefold from pre- to post-light shift. The decrease in phycobilisome synthesis liberated enough material and reductant to allow a doubling of Rubisco and up to a sixfold increase in PSII complexes per cell. Low-C(i) cells had smaller initial phycobilisome pools and upon increased light; their reallocation of reductant from phycobilisome synthesis may have limited the rate and extent of light acclimation, compared to high-C(i) cells. Acclimation to increased light involved large reallocations of C, N, and reductant among different components of the photosynthetic apparatus, but total allocation to the apparatus was fairly stable at ca. 50% of cellular N, and drew 25-50% of reductant from photosynthesis.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/análisis , Ficobilisomas/metabolismo , Sustancias Reductoras/metabolismo , Ribulosa-Bifosfato Carboxilasa/análisis , Synechococcus/metabolismo , Adaptación Fisiológica , Luz , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA