Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-122291

RESUMEN

COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-045617

RESUMEN

The novel coronavirus SARS-CoV-2 was identified as the causative agent of the ongoing pandemic COVID 19. COVID-19-associated deaths are mainly attributed to severe pneumonia and respiratory failure. Recent work demonstrated that SARS-CoV-2 binds to angiotensin converting enzyme 2 (ACE2) in the lung. To better understand ACE2 abundance and expression patterns in the lung we interrogated our in-house single-cell RNA-sequencing dataset containing 70,085 EPCAM+ lung epithelial cells from paired normal and lung adenocarcinoma tissues. Transcriptomic analysis revealed a diverse repertoire of airway lineages that included alveolar type I and II, bronchioalveolar, club/secretory, quiescent and proliferating basal, ciliated and malignant cells as well as rare populations such as ionocytes. While the fraction of lung epithelial cells expressing ACE2 was low (1.7% overall), alveolar type II (AT2, 2.2% ACE2+) cells exhibited highest levels of ACE2 expression among all cell subsets. Further analysis of the AT2 compartment (n = 27,235 cells) revealed a number of genes co-expressed with ACE2 that are important for lung pathobiology including those associated with chronic obstructive pulmonary disease (COPD; HHIP), pneumonia and infection (FGG and C4BPA) as well as malarial/bacterial (CD36) and viral (DMBT1) scavenging which, for the most part, were increased in smoker versus light or non-smoker cells. Notably, DMBT1 was highly expressed in AT2 cells relative to other lung epithelial subsets and its expression positively correlated with ACE2. We describe a population of ACE2-positive AT2 cells that co-express pathogen (including viral) receptors (e.g. DMBT1) with crucial roles in host defense thus comprising plausible phenotypic targets for treatment of COVID-19.

3.
Chinese Journal of Cancer ; (12): 295-309, 2015.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-349592

RESUMEN

The molecular characterization of various cancers has shown that cancers with the same origins, histopathologic diagnoses, and clinical stages can be highly heterogeneous in their genetic and epigenetic alterations that cause tumorigenesis. A number of cancer driver genes with functional abnormalities that trigger malignant transformation and that are required for the survival of cancer cells have been identified. Therapeutic agents targeting some of these cancer drivers have been successfully developed, resulting in substantial improvements in clinical symptom amelioration and outcomes in a subset of cancer patients. However, because such therapeutic drugs often benefit only a limited number of patients, the successes of clinical development and applications rely on the ability to identify those patients who are sensitive to the targeted therapies. Thus, biomarkers that can predict treatment responses are critical for the success of precision therapy for cancer patients and of anticancer drug development. This review discusses the molecular heterogeneity of lung cancer pathogenesis; predictive biomarkers for precision medicine in lung cancer therapy with drugs targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), and immune checkpoints; biomarkers associated with resistance to these therapeutics; and approaches to identify predictive biomarkers in anticancer drug development. The identification of predictive biomarkers during anticancer drug development is expected to greatly facilitate such development because it will increase the chance of success or reduce the attrition rate. Additionally, such identification will accelerate the drug approval process by providing effective patient stratification strategies in clinical trials to reduce the sample size required to demonstrate clinical benefits.


Asunto(s)
Humanos , Biomarcadores de Tumor , Transformación Celular Neoplásica , Resistencia a Antineoplásicos , Genes erbB-1 , Neoplasias Pulmonares , Farmacogenética , Medicina de Precisión , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Receptores ErbB
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA