Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-503039

RESUMEN

The SARS-CoV-2 main protease (Mpro) is a major therapeutic target. The Mpro inhibitor, nirmatrelvir, is the antiviral component of Paxlovid, an orally available treatment for COVID-19. As Mpro inhibitor use increases, drug resistant mutations will likely emerge. We have established a non-pathogenic system, in which yeast growth serves as a proxy for Mpro activity, enabling rapid identification of mutants with altered enzymatic activity and drug sensitivity. The E166 residue is known to be a potential hot spot for drug resistance and yeast assays showed that an E166R substitution conferred strong nirmatrelvir resistance while an E166N mutation compromised activity. On the other hand, N142A and P132H mutations caused little to no change in drug response and activity. Standard enzymatic assays confirmed the yeast results. In turn, we solved the structures of Mpro E166R, and Mpro E166N, providing insights into how arginine may drive drug resistance while asparagine leads to reduced activity. The work presented here will help characterize novel resistant variants of Mpro that may arise as Mpro antivirals become more widely used.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-497978

RESUMEN

The SARS-CoV-2 main protease (Mpro) is the drug target of Pfizers oral drug Paxlovid. The emergence of SARS-CoV-2 variants with mutations in Mpro raised the alarm of potential drug resistance. In this study, we identified 100 naturally occurring Mpro mutations located at the nirmatrelvir binding site, among which 20 mutants, including S144M/F/A/G/Y, M165T, E166G, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (kcat/Km <10-fold change) and resistance to nirmatrelvir (Ki >10-fold increase). X-ray crystal structures were determined for seven representative mutants with and/or without GC-376/nirmatrelvir. Viral growth assay showed that Mpro mutants with reduced enzymatic activity led to attenuated viral replication. Overall, our study identified several drug resistant hot spots that warrant close monitoring for possible clinical evidence of Paxlovid resistance. One Sentence SummaryPaxlovid resistant SARS-CoV-2 viruses with mutations in the main protease have been identified from clinical isolates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA