Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20458, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227424

RESUMEN

Sea level rise (SLR) poses a significant threat to coastal regions worldwide, particularly affecting over 60 million people living below 10 m above sea level along the African coast. This study analyzes the spatio-temporal trends of sea level anomaly (SLA) and its components (thermosteric, halosteric and ocean mass) in the Eastern Tropical Atlantic Ocean (ETAO) from 1993 to 2022. The SLA trend for the ETAO, derived from satellite altimetry, is 3.52 ± 0.47 mm/year, similar to the global average of 3.56 ± 0.67 mm/year. Of the three upwelling regions, the Gulf of Guinea (GoG) shows the highest regional trend of 3.42 ± 0.12 mm/year. Using the ARMORD3D dataset, a positive thermosteric sea level trend of 0.88 ± 0.04 mm/year is observed, particularly in the equatorial and southern Atlantic regions. The steric component drives the interannual SLA variability, while the ocean mass component dominates the long-term trends, as confirmed by the GRACE and GRACE-FO missions for 2002-2022. For those two decades, the total SLR from altimetry amounts to 3.80 ± 0.8 mm/year, whilst the steric component is reduced to only 0.19 ± 0.05 mm/year, leaving a residual increase in the ETAO of 3.69 ± 0.5 mm/year. The independent mass change from GRACE amounts to 2.78 ± 0.6 mm/year for this region, which just closes the sea level budget within present uncertainty levels. Spatial analysis of the steric components indicates a warming along the equatorial African coast including the GoG and a freshening near Angola. Strong correlations with regional climate factors, particularly the Tropical South Atlantic Index, highlight the influence of persistent climate modes. These findings underscore the urgent need for mitigation and adaptation strategies to SLR in the ETAO, especially for densely populated coastal communities.

2.
Sci Rep ; 14(1): 4759, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413702

RESUMEN

Coastal zones with dense populations, low elevations and/or inadequate adaptive capacity are on the frontline of unprecedented impacts from climate change. The Gulf of Guinea (GoG), stretching from Liberia to Gabon, is in particular vulnerable to coastal flooding caused by local and/or climate-induced sea level rise. In this region, interannual to decadal coastal sea level changes remain poorly understood, mainly due to a lack of tide gauge stations. Here we use nearly three decades (1993-2021) of satellite altimetry data to study the link between the Equatorial Atlantic and coastal GoG sea level variability. The rate of mean sea level rise increased from 3.47 to 3.89 ± 0.10 mm/yr from the Equatorial oceanic domain to the GoG coastal area, with an acceleration of 0.094 ± 0.050 mm/yr2. This corresponds to a mean sea level rise of about 8.9 cm over the entire altimetry period, 1993-2021. We focus on the (extreme) warm/cold events that occur in both the GoG during Atlantic Niños, and along the Angola-Namibia coast during Benguela Niños. Both events are driven by remote forcing via equatorial Kelvin waves and local forcing by local winds, freshwater fluxes and currents intensifications. Analysis of altimetry-based sea level, sea surface temperature anomalies, 20 °C isotherm based PIRATA moorings, and the Argo-based steric and thermometric sea level allows us to follow the coastal trapped waves (CTWs) along the GoG, and its link with major events observed along the strong Equatorial Atlantic warmings in 2010, 2012, 2019 and 2021. Both 2019 and 2021 warming have been identified as the warmest event ever reported in this region during the last 40 years. A lag of 1 month is observed between equatorial and West African coastal trapped wave propagation. This observation may help to better anticipate and manage the effects of extreme events on local ecosystems, fisheries, and socio-economic activities along the affected coastlines. In order to enable informed decision-making and guarantee the resilience of coastal communities in the face of climate change, it emphasises the significance of ongoing study in this field.

3.
J Environ Radioact ; 100(5): 375-95, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19304359

RESUMEN

The spatial and temporal distributions of the anthropogenic radionuclides (137)Cs and (90)Sr, originating from nuclear bomb testing, the Sellafield reprocessing plant in the Irish Sea (UK), and from the Ob and Yenisey river discharges to the Arctic Ocean, have been simulated using the global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysis fields for the period of 1948-1999. Comparison of the temporal evolution of the observed and the simulated concentrations of (90)Sr has been performed in the Kara Sea. The relative contributions of the different sources on the temporal and spatial distributions of the surface (90)Sr are quantified over the simulated period. It follows that the Ob river discharge dominated the surface (90)Sr over most of the Arctic Ocean and along the eastern and western coasts of Greenland before 1960. During the period of 1980-1990, the atmospheric fallout and the Ob river discharge were equally important for the (90)Sr distribution in the Arctic Ocean. Furthermore, an attempt has been made to explore the possible dispersion of accidental released (90)Sr from the Ob and Yenisey rivers under a global warming scenario (2 x CO(2)). The difference between the present-day and the global warming scenario runs indicates that more of the released (90)Sr from the Ob and Yenisey rivers is confined to the Arctic Ocean in the global warming run, particularly in the near coastal, non-European part of the Arctic Ocean.


Asunto(s)
Modelos Teóricos , Monitoreo de Radiación/estadística & datos numéricos , Contaminantes Radiactivos/análisis , Radioisótopos de Estroncio/análisis , Regiones Árticas , Océano Atlántico , Radioisótopos de Cesio/análisis , Simulación por Computador , Movimientos del Agua
4.
Science ; 310(5750): 1013-6, 2005 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-16239440

RESUMEN

A continuous data set of Greenland Ice Sheet altimeter height from European Remote Sensing satellites (ERS-1 and ERS-2), 1992 to 2003, has been analyzed. An increase of 6.4 +/- 0.2 centimeters per year (cm/year) is found in the vast interior areas above 1500 meters, in contrast to previous reports of high-elevation balance. Below 1500 meters, the elevation-change rate is -2.0 +/- 0.9 cm/year, in qualitative agreement with reported thinning in the ice-sheet margins. Averaged over the study area, the increase is 5.4 +/- 0.2 cm/year, or approximately 60 cm over 11 years, or approximately 54 cm when corrected for isostatic uplift. Winter elevation changes are shown to be linked to the North Atlantic Oscillation.

5.
J Environ Radioact ; 71(1): 1-16, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14557033

RESUMEN

The spatial and temporal distributions of the anthropogenic radionuclides (137)Cs and (90)Sr, originating from nuclear bomb testing and the Sellafield reprocessing plants in the Irish Sea, are simulated using a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM). The physical model is forced with daily atmospheric re-analysed fields for the period 1950 to present. Comparison of temporal evolution of observed and simulated concentrations of (137)Cs have been conducted for the regions east of Scotland, west of central Norway and at the entrance of the Barents Sea. It follows that the radionuclides from the Sellafield discharge reach the Barents Sea region after 4-5 years, in accordance with observations. The simulation provides a detailed distribution and evolution of the radionuclides over the integration time. For the Atlantic waters off the coast of Norway and in the southern Barents Sea, the atmospheric fallout dominates over the Sellafield release up to the mid 1960s and from the early 1990s, whereas Sellafield is the main source for the two radionuclides in the 1970s and 1980s. It is furthermore argued that model systems like the one presented here can be used for future prediction of radioactive contaminations in the Nordic Seas and the Arctic Ocean, for instance under various global warming scenarios.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Modelos Teóricos , Guerra Nuclear , Movimientos del Aire , Regiones Árticas , Océano Atlántico , Radioisótopos de Cesio/análisis , Predicción , Efecto Invernadero , Radioisótopos de Estroncio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA