Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(35): 8933-8941, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173057

RESUMEN

With a lateral bisnaphtho-extended chemical structure, finite 7-13 carbon atom wide armchair graphene nanoribbons (7-13-aGNRs) were on-surface synthesized. For all lengths up to N = 7 monomer units, low-temperature ultrahigh vacuum scanning tunneling spectroscopy and spatial dI/dV maps were recorded at each captured tunneling resonance. The degeneracy of the two central electronic end states (ESs) occurs in a slowly decaying regime with N converging toward zero for N = 6 long 7-13-aGNR (12 bonded anthracenes), while it is N = 2 (4 bonded anthracenes) for seven carbon atoms wide armchair GNRs (7-aGNRs). The two end dI/dV conductance maxima of ESs are also shifted away from strictly two ends of the 7-13-aGNR compared to the 7-aGNR. Using the quantum topology graph filiation between finite length polyacetylene and 7-13-aGNRs wires, we show that this slow decay of 7-13-aGNR ESs is coming from the property of the topological Hückel band matrix that expels the ESs into its eigenvalue spectrum gaps to keep harmony in the core spectrum.

2.
Nanotechnology ; 35(31)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38640905

RESUMEN

A direct focused He+beam direct machining is presented to fabricate solid-state nano-disk at the surface of a graphene multilayer micro-flake deposited on an Au/Ti/sapphire surface. At irradiation doses larger than 5.0 × 1017ions cm-2and with a beam size well below 1 nm, graphene disks down to 20 nm in diameter have been machined with for nano-disk down to 50 nm in diameter, a central hole for preparing the positioning of a rotation axle. The local heat generated by this irradiation is inducing a partial graphene amorphization and deformation, leading to a complete graphene nano-disk vaporization at doses larger than 5 × 1018ions cm-2. A dry transfer printing technique followed by a graphene surface cleaning was used to transfer the nano-disks from its initial surface to a fresh and clean surface. Tapping mode atomic force micrograph have been recorded to follow the vaporization as a function of the He+dose to confirm the graphene solid-state nano-disk fabrication limit to about 20 nm with this process.

3.
Commun Chem ; 6(1): 266, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057581

RESUMEN

Low electronic gap graphene nanoribbons (GNRs) are used for the fabrication of nanomaterial-based devices and, when isolated, for mono-molecular electronics experiences, for which a well-controlled length is crucial. Here, an on-surface chemistry protocol is monitored for producing long and well-isolated GNR molecular wires on an Au(111) surface. The two-step Ullmann coupling reaction is sequenced in temperature from 100 °C to 350 °C by steps of 50 °C, returning at room temperature between each step and remaining in ultrahigh vacuum conditions. After the first annealing step at 100 °C, the monomers self-organize into 2-monolayered nano-islands. Next, the Ullmann coupling reaction takes place in both 1st and 2nd layers of those nano-islands. The nano-island lateral size and shape are controlling the final GNR lengths. Respecting the above on-surface chemistry protocol, an optimal initial monomer coverage of ~1.5 monolayer produces isolated GNRs with a final length distribution reaching up to 50 nm and a low surface coverage of ~0.4 monolayer suitable for single molecule experiments.

4.
ACS Nano ; 17(3): 3128-3134, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638056

RESUMEN

Depending on its adsorption conformation on the Au(111) surface, a zwitterionic single-molecule machine works in two different ways under bias voltage pulses. It is a unidirectional rotor while anchored on the surface. It is a fast-drivable molecule vehicle (nanocar) while physisorbed. By tuning the surface coverage, the conformation of the molecule can be selected to be either rotor or nanocar. The inelastic tunneling excitation producing the movement is investigated in the same experimental conditions for both the unidirectional rotation of the rotor and the directed movement of the nanocar.

5.
Nanoscale ; 13(38): 16077-16083, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34549747

RESUMEN

We present the chemical anchoring of a DMBI-P molecule-rotor to the Au(111) surface after a dissociation reaction. At the temperature of 5 K, the anchored rotor shows a sequential unidirectional rotational motion through six defined stations induced by tunneling electrons. A typical voltage pulse of 400 mV applied on a specific location of the molecule causes a unidirectional rotation of 60° with a probability higher than 95%. When the temperature of the substrate increases above 20 K, the anchoring is maintained and the rotation stops being unidirectional and randomly explores the same six stations. Density functional theory simulations confirm the anchoring reaction. Experimentally, the rotation shows a clear threshold at the onset of the C-H stretch manifold, showing that the molecule is first vibrationally excited and later it decays into the rotational degrees of freedom.

6.
Nano Lett ; 21(19): 8317-8323, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34520215

RESUMEN

Starting from a long aza-starphene neutral and nonmagnetic organic molecule, a single-molecule magnet is on-surface constructed using up to 3 light nonmagnetic aluminum (Al) atoms. Seldom observed in solution with transition-metal atoms and going from 1 to 3 Al coordinated atoms, the doublet-singlet-doublet transition is easily on-surface accessible using the scanning tunneling microscope single-atom and single-molecule manipulations on a gold(111) surface. With 3 coordinated Al atoms, the lateral vibration modes of the Al3-aza-starphene molecule magnet are largely frozen. Using the Kondo states, this opens the observation of the in-phase Al vertical atom vibrations and out-of-phase central phenyl vibrations.

7.
J Phys Chem Lett ; 12(35): 8528-8532, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34464145

RESUMEN

A specifically designed aza-starphene molecule is presented where contacting one, two, and/or three single Al adatoms allows this molecule to function as a "3-inputs & 2-outputs" digital full adder on a Au(111) surface. Sequentially positioning single Al adatoms with atomic precision to interact with aza-starphene, inputs one classical digit per Al, which is converted to quantum information by the molecule. The intramolecular logical calculations do not require a solid-state digital full adder cascade-like architecture. The measured Boolean truth table results in part from the quantum level repulsion effect and in part from a nonlinear magnetic effect also intrinsic to the aza-starphene molecule with its contacted Al adatoms.

8.
J Phys Chem Lett ; 11(16): 6892-6899, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32787202

RESUMEN

The realization of a train of molecule-gears working under the tip of a scanning tunneling microscope (STM) requires a stable anchor of each molecule to the metal surface. Such an anchor can be promoted by a radical state of the molecule induced by a dissociation reaction. Our results, rationalized by density functional theory calculations, reveal that such an open radical state at the core of star-shaped pentaphenylcyclopentadiene (PPCP) favors anchoring. Furthermore, to allow the transmission of motion by STM manipulation, the molecule-gears should be equipped with specific groups facilitating the tip-molecule interactions. In our case, a tert-butyl group positioned at one tooth end of the gear benefits both the tip-induced manipulation and the monitoring of rotation. With this optimized molecule, we achieve reproducible and stepwise rotations of the single gears and transmit rotations for up to three interlocked units.

9.
Nanotechnology ; 31(34): 345708, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32530821

RESUMEN

A focused He+ beam with a beam diameter less than 1 nm is heating up the targeted surface for a He+ dose larger than 1 × 1020 ions cm-2. The temperature can reach 1000 °C locally, resulting in surface decomposition or chemical reactions. This temperature was measured by fabricating gold nanodisks down to 20 nm in diameter and 10 nm in thickness on mica and sapphire surfaces. The melting and vaporization of these nanodisks were used to determine this temperature according to the known gold nanocluster melting temperature variations as a function of their volume. This local heat production is very negative for precise He+ nanolithography resist processes but advantageous without a resist when used to directly nano-sculpture a nanomaterial when a very thermally conductive support like sapphire is selected.

10.
Phys Chem Chem Phys ; 22(27): 15208-15213, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32427237

RESUMEN

On a gold surface, supramolecules composed of 4-acetylbiphenyl molecules show structural directionality, reproducibility and robustness to external perturbations. We investigate the assembly of those molecules on the Au(111) surface and analyze how the observed supramolecular structures are the result of weak long-range dispersive forces stabilizing the 4-acetylbiphenyl molecules together. Metallic adatoms serve as stabilizing agents. Our analysis suggests new ways of creating complex molecular nano-objects that can eventually be used as devices or as seeds for extended hierarchical structures.

11.
ACS Nano ; 14(1): 1011-1017, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31829618

RESUMEN

The acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here, we present the on-surface generation of the longest acene obtained so far: dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface. We observe that, after a progressive closing of the gap and a stabilization to about 1 eV at the length of decacene and undecacene, the energy gap of dodecacene unexpectedly increases to 1.4 eV. Considering the acene series as an exemplary general case, we discuss the evolution with length of the single tunneling resonances in comparison with ionization energy, electronic affinity, and optical gap.

12.
Nano Lett ; 20(1): 384-388, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31846337

RESUMEN

The Kondo effect results from the interactions of the conduction electrons in a metal bulk with localized magnetic impurities. While adsorbed atop a metallic surface, the on-surface nanoscale version of this effect is observed when a single magnetic atom or a single magnetic molecule (SMM) is interacting with the conduction electrons. SMMs are commonly organometallic complexes incorporating transition-metal atoms in different oxidation states. We demonstrate how a single nonmagnetic neutral tetrabenzo[a,c,j,h]phenazine molecule can be on-surface-coordinated with exactly two aluminum metal atoms (between Al(I) and Al(II) oxidation state on the Au(111) surface) by low-temperature scanning tunneling microscope (LT-STM) single-atom manipulation. It results in a Kondo measurable localized molecular magnetic moment. This opens a new way to design SMM complexes without the need for heavy transition-metal atoms and complex ligands to stabilize the molecular coordination sphere.

13.
J Phys Chem Lett ; 10(21): 6462-6467, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31584279

RESUMEN

Two molecule-gears, 1.2 nm in diameter with six teeth, are mounted each on a single copper adatom separated exactly by 1.9 nm on a lead surface using a low-temperature scanning tunneling microscope (LT-STM). A functioning train of two molecule-gears is constructed complete with a molecule-handle. Not mounted on a Cu adatom axle, this ancillary molecule-gear is mechanically engaged with the first molecule-gear of the train to stabilize its step-by-step rotation. Centered on its Cu adatom axle, the rotation of the first gear of the train step by step rotates the second similar to a train of macroscopic gears. From the handle to the first and to this second molecule-gear, the exact positioning of the two Cu adatom axles on the lead surface ensures that the molecular teeth-to-teeth mechanics is fully reversible.

14.
Nat Commun ; 10(1): 1573, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952953

RESUMEN

Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.

15.
Nanoscale ; 10(36): 17131-17139, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30182095

RESUMEN

We investigate the conductance of optimized donor-acceptor-donor molecular wires obtained by on-surface synthesis on the Au(111) surface. A careful balance between acceptors and donors is achieved using a diketopyrrolopyrrole acceptor and two thiophene donors per unit along the wire. Scanning tunneling microscopy imaging, spectroscopy, and conductance measurements done by pulling a single molecular wire at one end are presented. We show that the conductance of the obtained wires is among the highest reported so far in a tunneling transport regime, with an inverse decay length of 0.17 Å-1. Using complex band structure calculations, different donor and acceptor groups are discussed, showing how a balanced combination of donor and acceptor units along the wire can further minimize the decay of the tunneling current with length.

16.
ACS Nano ; 12(8): 8506-8511, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30059612

RESUMEN

On-surface synthesis provides a powerful method for the generation of long acene molecules, making possible the detailed investigation of the electronic properties of single higher acenes on a surface. By means of scanning tunneling microscopy and spectroscopy combined with theoretical considerations, we discuss the polyradical character of the ground state of higher acenes as a function of the number of linearly fused benzene rings. We present energy and spatial mapping of the tunneling resonances of hexacene, heptacene, and decacene, and discuss the role of molecular orbitals in the observed tunneling conductance maps. We show that the energy gap between the first electronic tunneling resonances below and above the Fermi energy stabilizes to a finite value, determined by a first diradical electronic perturbative contribution to the polyacene electronic ground state. Up to decacene, the main contributor to the ground state of acenes remains the lowest-energy closed-shell electronic configuration.

17.
ACS Nano ; 12(2): 1139-1145, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29266928

RESUMEN

By a combination of solution and on-surface chemistry, we synthesized an asymmetric starphene molecule with two long anthracenyl input branches and a short naphthyl output branch on the Au(111) surface. Starting from this molecule, we could demonstrate the working principle of a single molecule NAND logic gate by selectively contacting single gold atoms by atomic manipulation to the longer branches of the molecule. The logical input "1" ("0") is defined by the interaction (noninteraction) of a gold atom with one of the input branches. The output is measured by scanning tunneling spectroscopy following the shift in energy of the electronic tunneling resonances at the end of the short branch of the molecule.

18.
Polymers (Basel) ; 10(2)2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30966242

RESUMEN

Long poly-diacetylene chains are excellent candidates for planar, on-surface synthesized molecular electronic wires. Since hexagonal-Boron Nitride (h-BN) was identified as the best available atomically flat insulator for the deposition of poly-diacetylene precursors, we demonstrate the polymerization patterns and rate on it under UV-light irradiation, with subsequent polymer identification by atomic force microscopy. The results on h-BN indicate self-sensitization which yields blocks comprised of several polymers, unlike on the well-studied graphite/diacetylene system, where the polymers are always isolated. In addition, the photo-polymerization proceeds at least 170 times faster on h-BN, where it also results in longer polymers. Both effects are explained by the h-BN bandgap, which is larger than the diacetylene electronic excitation energy, thus allowing the transfer of excess energy absorbed by polymerized wires to adjacent monomers, triggering their polymerization. This work sets the stage for conductance measurements of single molecular poly-diacetylene wires on h-BN.

19.
ACS Nano ; 11(12): 12419-12425, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29136462

RESUMEN

We investigated the thermally induced on-surface cyclization of 4,10-bis(2'-bromo-4'-methylphenyl)-1,3-dimethylpyrene to form the previously unknown, nonalternant polyaromatic hydrocarbon diindeno[1,2,3-cd:1',2',3'-mn]pyrene on Au(111) using scanning tunneling microscopy and spectroscopy. The observed unimolecular reaction involves thermally induced debromination followed by selective ring closure to fuse the neighboring benzene moieties via a five-membered ring. The structure of the product has been verified experimentally as well as theoretically. Our results demonstrate that on-surface reactions give rise to unusual chemical reactivities and selectivities and provide access to nonalternant polyaromatic molecules.

20.
J Phys Condens Matter ; 29(44): 444004, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-28869213

RESUMEN

Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA