Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.242
Filtrar
1.
Can Vet J ; 65(9): 948-958, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219599

RESUMEN

An increase in products containing phytocannabinoids, particularly cannabidiol, is often observed in human and veterinary markets following the legalization of hemp (cannabis) for industrial purposes. In veterinary medicine, derivatives of Cannabis sativa are used for managing pain (osteoarticular, oncological, and neuropathic), epilepsy, and behavioral disorders, as well as oncological, immune-mediated, cardiovascular, and respiratory diseases. In addition, there is growing interest in incorporating C. sativa into livestock feed. To elucidate the mechanisms of action of phytocannabinoids, a thorough understanding of the endocannabinoid system and its role in maintaining homeostasis is essential. Short-term use of phytocannabinoid products appears generally safe, but further research is required to understand the routes of administration, pharmacokinetics, and pharmacodynamics across various species. Although literature on phytocannabinoids in veterinary patients is limited, the available data suggest significant therapeutic potential.


Cannabis sativa en médecine vétérinaire : fondements et applications thérapeutiquesUne augmentation des produits contenant des phytocannabinoïdes, notamment du cannabidiol, est souvent observée sur les marchés humains et vétérinaires à la suite de la légalisation du chanvre (cannabis) à des fins industrielles. En médecine vétérinaire, les dérivés du Cannabis sativa sont utilisés pour gérer la douleur (ostéoarticulaire, oncologique et neuropathique), l'épilepsie et les troubles du comportement, ainsi que les maladies oncologiques, immunitaires, cardiovasculaires et respiratoires. En outre, l'incorporation de C. sativa dans l'alimentation du bétail suscite un intérêt croissant. Pour élucider les mécanismes d'action des phytocannabinoïdes, une compréhension approfondie du système endocannabinoïde et de son rôle dans le maintien de l'homéostasie est essentielle. L'utilisation à court terme de produits phytocannabinoïdes semble généralement sécuritaire, mais des recherches supplémentaires sont nécessaires pour comprendre les voies d'administration, la pharmacocinétique et la pharmacodynamique chez diverses espèces. Bien que la littérature sur les phytocannabinoïdes chez les patients vétérinaires soit limitée, les données disponibles suggèrent un potentiel thérapeutique important.(Traduit par Dr Serge Messier).


Asunto(s)
Cannabis , Cannabis/química , Animales , Medicina Veterinaria , Cannabinoides/uso terapéutico , Fitoterapia/veterinaria
2.
Stem Cell Rev Rep ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259446

RESUMEN

The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.

3.
Commun Psychol ; 2(1): 84, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242969

RESUMEN

The idea that individuals ascribe value to social phenomena, broadly construed, is well-established. Despite the ubiquity of this concept, defining social value in the context of interpersonal relationships remains elusive. This is notable because while prominent theories of human social behavior acknowledge the role of value-based processes, they mostly emphasize the value of individual actions an agent may choose to take in a given environment. Comparatively little is known about how humans value their interpersonal relationships. To address this, we devised a method for engineering a behavioral signature of social value in several independent samples (total N = 1111). Incorporating the concept of opportunity cost from economics and data-driven quantitative methods, we derived this signature by sourcing and weighting a range of social behaviors based on how likely individuals are to prioritize them in the face of limited resources. We examined how strongly the signature was expressed in self-reported social behaviors with specific relationship partners (a parent, close friend, and acquaintance). Social value scores track with other aspects of these relationships (e.g., relationship quality, aversion to losing relationship partners), are predictive of decision preferences on a range of tasks, and display good psychometric properties. These results provide greater mechanistic specificity in delineating human value-based behavior in social contexts and help parse the motivational relevance of the different facets that comprise interpersonal relationships.

4.
Res Sq ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39257994

RESUMEN

Senescent cells secrete proinflammatory factors known as the senescence-associated secretory phenotype (SASP), contributing to tissue dysfunction and aging. Mitochondrial dysfunction is a key feature of senescence, influencing SASP via mitochondrial DNA (mtDNA) release and cGAS/STING pathway activation. Here, we demonstrate that mitochondrial RNA (mtRNA) also accumulates in the cytosol of senescent cells, activating RNA sensors RIG-I and MDA5, leading to MAVS aggregation and SASP induction. Inhibition of these RNA sensors significantly reduces SASP factors. Furthermore, BAX and BAK plays a key role in mtRNA leakage during senescence, and their deletion diminishes SASP expression in vitro and in a mouse model of Metabolic Dysfunction Associated Steatohepatitis (MASH). These findings highlight mtRNA's role in SASP regulation and its potential as a therapeutic target for mitigating age-related inflammation.

5.
Open Res Eur ; 4: 94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39279819

RESUMEN

Background: Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods: A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results: WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions: This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.

6.
Methods ; 231: 45-54, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278386

RESUMEN

Excess body weight, suboptimal diet, physical inactivity, alcohol consumption, sleep disruption, and elevated stress are modifiable risk factors associated with the development of chronic diseases. Digital behavioural interventions targeting these factors have shown promise in improving health and reducing chronic disease risk. The Digital Intervention for behaviouR changE and Chronic disease prevenTION (DIRECTION) study is a parallel group, two-arm, randomized controlled trial evaluating the effects of adding healthcare professional guidance and peer support via group-based sessions to a web-based wellness platform (experimental group, n = 90) compared to a self-guided use of the platform (active control group, n = 90) among individuals with a body mass index (BMI) of 30 to <35 kg/m2 and aged 40-65 years. Obesity is defined by a high BMI. The web-based wellness platform employed in this study is My Viva Plan (MVP)®, which holistically integrates nutrition, physical activity, and mindfulness programs. Over 16 weeks, the experimental group uses the web-based wellness platform daily and engages in weekly online support group sessions. The active control group exclusively uses the web-based wellness platform daily. Assessments are conducted at baseline and weeks 8 and 16. The primary outcome is between-group difference in weight loss (kg) at week 16, and secondary outcomes are BMI, percent weight change, proportion of participants achieving 5% or more weight loss, dietary intake, physical activity, alcohol consumption, sleep, and stress across the study. A web-based wellness platform may be a scalable approach to promote behavioural changes that positively impact health. This study will inform the development and implementation of interventions using web-based wellness platforms and personalized digital interventions to improve health outcomes and reduce chronic disease risk among individuals with obesity.

7.
Adv Healthc Mater ; : e2400286, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235370

RESUMEN

This study proposes a novel, versatile, and modular platform for constructing porous and heterogeneous microenvironments based on the embedding of liquefied-based compartments in hydrogel systems. Using a bottom-up approach, microgels carrying the necessary cargo components, including cells and microparticles, are combined with a hydrogel precursor to fabricate a hierarchical structured (HS) system. The HS system possesses three key features that can be fully independently controlled: I) liquefied pockets enabling free cellular mobility; II) surface modified microparticles facilitating 3D microtissue organization inside the liquefied pockets; III) at a larger scale, the pockets are jammed in the hydrogel, forming a macro-sized construct. After crosslinking, the embedded microgels undergo a liquefaction process, forming a porous structure that ensures high diffusion of small biomolecules and enables cells to move freely within their miniaturized compartmentalized volume. More importantly, this platform allows the creation of multimodular cellular microenvironments within a hydrogel with controlled macrostructures, while decoupling micro- and macroenvironments. As a proof of concept, the enhancement of cellular functions using the HS system by encapsulating human adipose-derived mesenchymal stem cells (hASCs) is successfully demonstrated. Finally, the potential application of this system as a hybrid bioink for bioprinting complex 3D structures is showcased.

8.
Circ Cardiovasc Imaging ; 17(8): e016489, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163368

RESUMEN

BACKGROUND: Left ventricular (LV) hypertrophy occurs in both aortic stenosis (AS) and systemic hypertension (HTN) in response to wall stress. However, differentiation of hypertrophy due to these 2 etiologies is lacking. The aim was to study the 3-dimensional geometric remodeling pattern in severe AS pre- and postsurgical aortic valve replacement and to compare with HTN and healthy controls. METHODS: Ninety-one subjects (36 severe AS, 19 HTN, and 36 healthy controls) underwent cine cardiac magnetic resonance. Cardiac magnetic resonance was repeated 8 months post-aortic valve replacement (n=18). Principal component analysis was performed on the 3-dimensional meshes reconstructed from 109 cardiac magnetic resonance scans of 91 subjects at end-diastole. Principal component analysis modes were compared across experimental groups together with conventional metrics of shape, strain, and scar. RESULTS: A unique AS signature was identified by wall thickness linked to a LV left-right axis shift and a decrease in short-axis eccentricity. HTN was uniquely linked to increased septal thickness. Combining these 3 features had good discriminative ability between AS and HTN (area under the curve, 0.792). The LV left-right axis shift was not reversible post-aortic valve replacement, did not associate with strain, age, or sex, and was predictive of postoperative LV mass regression (R2=0.339, P=0.014). CONCLUSIONS: Unique remodeling signatures might differentiate the etiology of LV hypertrophy. Preliminary findings suggest that LV axis shift is characteristic in AS, is not reversible post-aortic valve replacement, predicts mass regression, and may be interpreted to be an adaptive mechanism.


Asunto(s)
Estenosis de la Válvula Aórtica , Implantación de Prótesis de Válvulas Cardíacas , Hipertensión , Hipertrofia Ventricular Izquierda , Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/complicaciones , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Femenino , Masculino , Imagen por Resonancia Cinemagnética/métodos , Persona de Mediana Edad , Hipertensión/fisiopatología , Hipertensión/complicaciones , Anciano , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Estudios de Casos y Controles , Valor Predictivo de las Pruebas , Resultado del Tratamiento , Diagnóstico Diferencial , Análisis de Componente Principal , Índice de Severidad de la Enfermedad , Válvula Aórtica/cirugía , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiopatología , Válvula Aórtica/patología , Factores de Tiempo , Imagenología Tridimensional
9.
Adv Mater ; : e2402988, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39139015

RESUMEN

The inclusion of hollow channels in tissue-engineered hydrogels is crucial for mimicking the natural physiological conditions and facilitating the delivery of nutrients and oxygen to cells. Although bio-fabrication techniques provide diverse strategies to create these channels, many require sophisticated equipment and time-consuming protocols. Herein, collagenase, a degrading agent for methacrylated gelatin hydrogels, and magnetic nanoparticles (MNPs) are combined and processed into enzymatically active spherical structures using a straightforward oil bath emulsion methodology. The generated microgels are then used to microfabricate channels within biomimetic hydrogels via a novel sculpturing approach that relied on the precise coupling of protein-enzyme pairs (for controlled local degradation) and magnetic actuation (for directional control). Results show that the sculpting velocity can be tailored by adjusting the magnetic field intensity or concentration of MNPs within the microgels. Additionally, varying the magnetic field position or microgel size generated diverse trajectories and channels of different widths. This innovative technology improves the viability of encapsulated cells through enhanced medium transport, outperforming non-sculpted hydrogels and offering new perspectives for hydrogel vascularization and drug/biomolecule administration. Ultimately, this novel concept can help design fully controlled channels in hydrogels or soft materials, even those with complex tortuosity, in a single wireless top-down biocompatible step.

10.
Adv Healthc Mater ; : e2401510, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101324

RESUMEN

One of the foremost targets in the advancement of biomaterials to engineer vascularized tissues is not only to replicate the composition of the intended tissue but also to create thicker structures incorporating a vascular network for adequate nutrients and oxygen supply. For the first time, to the best of current knowledge, a clinically relevant biomaterial is developed, demonstrating that hydrogels made from the human decellularized extracellular matrix can exhibit robust mechanical properties (in the kPa range) and angiogenic capabilities simultaneously. These properties enable the culture and organization of human umbilical vein endothelial cells into tubular structures, maintaining their integrity for 14 days in vitro without the need for additional polymers or angiogenesis-related factors. This is achieved by repurposing the placenta chorionic membrane (CM), a medical waste with an exceptional biochemical composition, into a valuable resource for bioengineering purposes. After decellularization, the CM underwent chemical modification with methacryloyl groups, giving rise to methacrylated CM (CMMA). CMMA preserved key proteins, as well as glycosaminoglycans. The resulting hydrogels rapidly photopolymerize and have enhanced strength and customizable mechanical properties. Furthermore, they demonstrate angio-vasculogenic competence in vitro and in vivo, holding significant promise as a humanized platform for the engineering of vascularized tissues.

11.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121846

RESUMEN

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Asunto(s)
Senescencia Celular , Humanos , Animales , Biomarcadores/metabolismo , Guías como Asunto , Neoplasias/patología
12.
Int J Pharm ; 664: 124626, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39208952

RESUMEN

The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.


Asunto(s)
Catalasa , Dextranos , Composición de Medicamentos , Excipientes , Manitol , Comprimidos , Trehalosa , Catalasa/química , Trehalosa/química , Manitol/química , Dextranos/química , Excipientes/química , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Secado por Pulverización , Agregado de Proteínas
13.
Trials ; 25(1): 526, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107793

RESUMEN

BACKGROUND: Exercise is known to provide multiple metabolic benefits such as improved insulin sensitivity and glucose control in individuals with type 2 diabetes mellitus (T2DM) and those at risk. Beyond the traditional exercise dose, exercise timing is perceived as a contemporary hot topic, especially in the field of T2DM; however, the number of intervention studies assessing exercise timing and glucose metabolism is scarce. Our aim is to test the effect of exercise timing (i.e., morning, afternoon, or evening) on the inter-individual response variability in glycemic control and related metabolic health parameters in individuals with T2DM and those at risk during a 12-week intervention. METHODS: A randomized crossover exercise intervention will be conducted involving two groups: group 1, individuals with T2DM; group 2, age-matched older adults with overweight/obesity. The intervention will consist of three 2-week blocks of supervised post-prandial exercise using high-intensity interval training (HIIT). Between each training block, a 2-week washout period, where participants avoid structured exercise, will take place. Assessments will be conducted in both groups before and after each exercise block. The primary outcomes include the 24-h area under the curve continuous glucose monitoring-based glucose. The secondary outcomes include body composition, resting energy expenditure, insulin response to a meal tolerance test, maximal aerobic capacity, peak power output, physical activity, sleep quality, and insulin and glucose levels. All primary and secondary outcomes will be measured at each assessment point. DISCUSSION: Outcomes from this trial will provide us additional insight into the role of exercise timing on the inter-individual response variability in glycemic control and other related metabolic parameters in two distinct populations, thus contributing to the development of more effective exercise prescription guidelines for individuals with T2DM and those at risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT06136013. Registered on November 18, 2023.


Asunto(s)
Glucemia , Estudios Cruzados , Diabetes Mellitus Tipo 2 , Entrenamiento de Intervalos de Alta Intensidad , Obesidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/fisiopatología , Obesidad/terapia , Obesidad/fisiopatología , Obesidad/sangre , Glucemia/metabolismo , Factores de Tiempo , Entrenamiento de Intervalos de Alta Intensidad/métodos , Relojes Circadianos , Persona de Mediana Edad , Masculino , Femenino , Sobrepeso/terapia , Sobrepeso/fisiopatología , Terapia por Ejercicio/métodos , Resultado del Tratamiento , Anciano , Control Glucémico/métodos , Ejercicio Físico
14.
Entropy (Basel) ; 26(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39202104

RESUMEN

Deep learning approaches have been gaining importance in several applications. However, the widespread use of these methods in safety-critical domains, such as Autonomous Driving, is still dependent on their reliability and trustworthiness. The goal of this paper is to provide a review of deep learning-based uncertainty methods and their applications to support perception tasks for Autonomous Driving. We detail significant Uncertainty Quantification and calibration methods, and their contributions and limitations, as well as important metrics and concepts. We present an overview of the state of the art of out-of-distribution detection and active learning, where uncertainty estimates are commonly applied. We show how these methods have been applied in the automotive context, providing a comprehensive analysis of reliable AI for Autonomous Driving. Finally, challenges and opportunities for future work are discussed for each topic.

15.
Adv Sci (Weinh) ; : e2404496, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207014

RESUMEN

Intervertebral disc (IVD) herniation is a prevalent spinal disorder, often necessitating surgical intervention such as microdiscectomy for symptomatic relief and nerve decompression. IVDs comprise a gel-like nucleus pulposus (NP) encased by an annulus fibrosus (AF), and their avascular nature renders them immune-privileged. Microdiscectomy exposes the residual NP to the immune system, precipitating an immune cell infiltration and attack that exacerbates IVD degeneration. While many efforts in the tissue engineering field are directed toward IVD regeneration, the inherently limited regenerative capacity due to the avascular and low-cellularity nature of the disc and the challenging mechanical environment of the spine often impedes success. This study, aiming to prevent IVD degeneration post-microdiscectomy, utilizes mucin-derived gels (Muc-gels) that form a gel at the surgical site, inspired by the natural mucin coating on living organisms to evade immune reorganization. It is shown that type I macrophages are present in severely degenerated human discs. Encapsulating IVDs within Muc-gels prevents fibrous encapsulation and macrophage infiltration in a mouse subcutaneous model. The injection of Muc-gels prevents IVD degeneration in a rat tail IVD degeneration model up to 24 weeks post-operation. Mechanistic investigations indicate that Muc-gels attenuate immune cell infiltration into NPs, offering durable protection against immune attack post-microdiscectomy.

16.
Nat Mater ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117911

RESUMEN

Leveraging human cells as materials precursors is a promising approach for fabricating living materials with tissue-like functionalities and cellular programmability. Here we describe a set of cellular units with metabolically engineered glycoproteins that allow cells to tether together to function as macrotissue building blocks and bioeffectors. The generated human living materials, termed as Cellgels, can be rapidly assembled in a wide variety of programmable three-dimensional configurations with physiologically relevant cell densities (up to 108 cells per cm3), tunable mechanical properties and handleability. Cellgels inherit the ability of living cells to sense and respond to their environment, showing autonomous tissue-integrative behaviour, mechanical maturation, biological self-healing, biospecific adhesion and capacity to promote wound healing. These living features also enable the modular bottom-up assembly of multiscale constructs, which are reminiscent of human tissue interfaces with heterogeneous composition. This technology can potentially be extended to any human cell type, unlocking the possibility for fabricating living materials that harness the intrinsic biofunctionalities of biological systems.

17.
ACS Sens ; 9(8): 4236-4247, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39038809

RESUMEN

In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution. Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique and has been proven efficient toward the detection of metabolites in biological media. However, profiling secreted metabolites in complex cellular environments such as those in tumor-stroma 3D in vitro models remains challenging. To address this limitation, we employed a SERS-based strategy to investigate the metabolic secretome of pancreatic tumor models within 3D cultures. We aimed to monitor the immunosuppressive potential of stratified pancreatic cancer-stroma spheroids as compared to 3D cultures of either pancreatic cancer cells or cancer-associated fibroblasts, focusing on the metabolic conversion of tryptophan into kynurenine by the IDO-1 enzyme. We additionally sought to elucidate the dynamics of tryptophan consumption in correlation with the size, temporal evolution, and composition of the spheroids, as well as assessing the effects of different drugs targeting the IDO-1 machinery. As a result, we confirm that SERS can be a valuable tool toward the optimization of cancer spheroids, in connection with their tryptophan metabolizing capacity, potentially allowing high-throughput spheroid analysis.


Asunto(s)
Neoplasias Pancreáticas , Espectrometría Raman , Triptófano , Triptófano/metabolismo , Espectrometría Raman/métodos , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Esferoides Celulares/metabolismo , Microambiente Tumoral
18.
Soft Matter ; 20(32): 6313-6326, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39049813

RESUMEN

The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.


Asunto(s)
Biomimética , Microambiente Celular , Ingeniería de Tejidos , Humanos , Biomimética/métodos , Animales , Materiales Biomiméticos/química , Materiales Biocompatibles/química
19.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065797

RESUMEN

Solanum surattense Burm. f. is a significant member of the Solanaceae family, and the Solanum genus is renowned for its traditional medicinal uses and bioactive potential. This systematic review adheres to PRISMA methodology, analyzing scientific publications between 1753 and 2023 from B-on, Google Scholar, PubMed, Science Direct, and Web of Science, aiming to provide comprehensive and updated information on the distribution, ethnomedicinal uses, chemical constituents, and pharmacological activities of S. surattense, highlighting its potential as a source of herbal drugs. Ethnomedicinally, this species is important to treat skin diseases, piles complications, and toothache. The fruit was found to be the most used part of this plant (25%), together with the whole plant (22%) used to treat different ailments, and its decoction was found to be the most preferable mode of herbal drug preparation. A total of 338 metabolites of various chemical classes were isolated from S. surattense, including 137 (40.53%) terpenoids, 56 (16.56%) phenol derivatives, and 52 (15.38%) lipids. Mixtures of different parts of this plant in water-ethanol have shown in vitro and/or in vivo antioxidant, anti-inflammatory, antimicrobial, anti-tumoral, hepatoprotective, and larvicidal activities. Among the metabolites, 51 were identified and biologically tested, presenting antioxidant, anti-inflammatory, and antitumoral as the most reported activities. Clinical trials in humans made with the whole plant extract showed its efficacy as an anti-asthmatic agent. Mostly steroidal alkaloids and triterpenoids, such as solamargine, solanidine, solasodine, solasonine, tomatidine, xanthosaponin A-B, dioscin, lupeol, and stigmasterol are biologically the most active metabolites with high potency that reflects the new and high potential of this species as a novel source of herbal medicines. More experimental studies and a deeper understanding of this plant must be conducted to ensure its use as a source of raw materials for pharmaceutical use.

20.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986816

RESUMEN

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.


Asunto(s)
Complejo IV de Transporte de Electrones , Galactosemias , Galactosafosfatos , Mitocondrias , Galactosemias/metabolismo , Galactosemias/patología , Galactosemias/genética , Galactosafosfatos/metabolismo , Humanos , Animales , Ratas , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fosforilación Oxidativa/efectos de los fármacos , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Galactosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA