Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Genet ; 15(10): e1008419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609971

RESUMEN

Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Morfogénesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Esterigmatocistina/biosíntesis
2.
Arch Insect Biochem Physiol ; 101(3): e21557, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31062883

RESUMEN

The European grapevine moth, Lobesia botrana (Denis & Schiffermüller), is a serious pest in vineyards in North and South America. Mating disruption techniques have been used to control and monitor L. botrana on the basis of its sexual communication. This needs a well-tuned olfactory system, in which it is believed that pheromone-binding proteins (PBPs) are key players that transport pheromones in the antennae of moths. In this study, the selectivity of a PBP, named as LbotPBP1, was tested by fluorescence binding assays against 11 sex pheromone components and 6 host plant volatiles. In addition, its binding mechanism was predicted on the basis of structural analyses by molecular docking and complex and steered molecular dynamics (SMD). Our results indicate that LbotPBP1 binds selectively to sex pheromone components over certain host plant volatiles, according to both in vitro and in silico tests. Thus, chain length (14 carbon atoms) and functional groups (i.e., alcohol and ester) appear to be key features for stable binding. Likewise, residues such as Phe12, Phe36, and Phe118 could participate in unspecific binding processes, whilst Ser9, Ser56, and Trp114 could participate in the specific recognition and stabilization of sex pheromones instead of host plant volatiles. Moreover, our SMD approach supported 11-dodecenyl acetate as the best ligand for LbotPBP1. Overall, the dynamics simulations, contact frequency analysis and SMD shed light on the binding mechanism of LbotPBP1 and could overcome the imprecision of molecular docking, supporting the in vitro binding assays. Finally, the role of LbotPBP1 in the chemical ecology of L. botrana is discussed.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Atractivos Sexuales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Insectos/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Unión Proteica
3.
Front Physiol ; 9: 1163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197600

RESUMEN

Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.

4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;45(1): 13-19, Jan. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-610548

RESUMEN

Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8 percent O2/92 percent N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT percent, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT percent in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2 percent) and severe HI groups (16.3, 32.2, and 43.8 percent, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.


Asunto(s)
Animales , Femenino , Ratas , Ansiedad/metabolismo , Conducta Animal/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/enzimología , Sustancia Negra/enzimología , /metabolismo , Animales Recién Nacidos , Ansiedad/enzimología , Hipoxia-Isquemia Encefálica/enzimología , Inmunohistoquímica , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , /análisis
5.
Braz J Med Biol Res ; 45(1): 13-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22147192

RESUMEN

Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/enzimología , Sustancia Negra/enzimología , Tirosina 3-Monooxigenasa/metabolismo , Animales , Animales Recién Nacidos , Ansiedad/enzimología , Femenino , Hipoxia-Isquemia Encefálica/enzimología , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Tirosina 3-Monooxigenasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA