Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1433727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156219

RESUMEN

Epoxy resins, known for their excellent properties, are widely used thermosetting resins, but their tendency towards brittle fracture limits their applications. This study addresses this issue by preparing graphene oxide via the Hummer method, modifying it with hyperbranched polyamide ester, and reducing it with hydrazine hydrate to obtain functionalized graphene. This functionalized graphene improves compatibility with epoxy resin. Using a novel two-phase extraction method, different ratios of functionalized graphene/epoxy composites were prepared and tested for mechanical properties and thermal stability. The results showed significant improvements: the tensile strength of composites with 0.1 wt% functionalized graphene increased by 77% over pure epoxy resin, flexural strength by 56%, and glass transition temperature by 50°C. These enhancements, attributed to the improved compatibility between graphene and epoxy resin, demonstrate the potential of functionalized graphene to mitigate the brittleness of epoxy resins, expanding their application potential.

2.
PLoS One ; 16(2): e0245985, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561130

RESUMEN

In recent years, the flow characteristics research of the interstage region in counter-rotating axial fans in terms of fluid dynamics has attracted much attention. Especially, the dynamic relationship between interstage pressure pulsation and blade vibration in counter-rotating axial fans has not yet been clarified. This paper performs the signal processing method of wavelet decomposition and reconstruction in time-frequency analysis process. Under different flow conditions, weak-coupling numerical simulation program is employed to analyze the fluid-structure coupling interaction between interstage pressure pulsations and blade vibrations in counter-rotating axial fans. The results indicate that the fluid-structure coupling interaction field in the interstage of counter-rotating axial fans mainly excites the first-order vibration of the second-stage blade. At the same time, the consistency between the pulsation frequency and the vibration frequency of the airflow reflects the good coupling property. Two stage blades cut the airflow to cause field changes and airflow pulsation, and then, airflow pulsation causes blades deformation and produces vibrations of the same frequency at the blade. The deformation of the blades, in turn, causes the flow field changes. Rotating stall, vortex movement and breakdown produced low-frequency airflow pulsation and vortex vibration of the blade.


Asunto(s)
Hidrodinámica , Rotación , Vibración , Análisis de Ondículas , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA