Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257121

RESUMEN

Caffeine is present in various foods and medicines and is highly accessible through various routes, regardless of age. However, most studies on caffeine have focused on the effects of high-dose caffeine ingestion based on the recommended daily amount for adults. In this study, we examined the physiological changes in the central and peripheral vessels that may occur when ingesting low-dose caffeine due to its high accessibility, with the aim of creating an environment of safe caffeine ingestion. This study included 26 healthy participants in their 20s. Peak systolic velocity (PSV), heart rate (HR), and pulse wave velocity (PWV) for vascular stiffness assessment were measured at 0, 30, and 60 min after caffeine ingestion using diagnostic ultrasound to determine the physiological changes in the blood vessels, common carotid artery (CCA) and radial artery (RA). In addition, percutaneous oxygen saturation (SpO2), blood pressure (BP), and accelerated photoplethysmography (APG) were measured. In comparison with before ingestion, the HR tended to decrease and showed a significant difference at 30 and 60 min (p = 0.014 and p = 0.031, respectively). PSV significantly decreased in both vessels at 30 and 60 min (p < 0.001 and p < 0.001, respectively). APG showed a decreasing trend until 60 min after ingestion, with a significant difference at 30 and 60 min (p = 0.003 and p = 0.012, respectively). No significant difference was observed in SpO2, BP, or PWV; however, they showed a tendency to increase after ingestion. Decreased HR may occur because of the baroreflex caused by an increase in BP. The RA has many branches and a smaller diameter; therefore, the PSV was lower in the RA than that in the CCA. This effect can occur because of the difficulty in the smooth expansion of blood vessels, which leads to a decrease in blood flow. In addition, an increase in intracellular calcium concentration can prevent vasodilation and increase the propagation velocity of pulse waves. The reflected waves can increase systolic blood pressure but reduce PWV and vascular elasticity. These results suggest that even low-dose caffeine can improve blood vessel health by providing temporary stimulation to the blood vessels; however, it can also cause changes in blood flow and blood vessel elasticity, which can lead to serious diseases such as stroke and high blood pressure. Therefore, caution should be exercised when caffeine consumption is indiscriminate.


Asunto(s)
Cafeína , Análisis de la Onda del Pulso , Adulto , Humanos , Ultrasonografía , Arteria Radial , Ingestión de Alimentos
2.
Ying Yong Sheng Tai Xue Bao ; 32(1): 309-316, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33477239

RESUMEN

To reconstruct the deposition rate of polychlorinated biphenyls (PCBs) in different historical periods and to examine the temporal and spatial trend of PCBs pollution, we analyzed the changes of PCBs concentration and deposition rate in peat cores and lake sediments, and evaluated the suitability of peat cores and lake sediments for studying PCBs deposition trend. Through the dating analysis of all samples, we found that peat bog could well record the historical sedimentation of PCBs. PCBs did not degrade in peat, and it was thus feasible to use peatland to examine the settlement of PCBs. In this study, the reconstruction time of ∑11PCBs in peat was from the beginning of 19th century to the beginning of 21st century. The mean inventory of ∑11PCBs in three peat cores of each bog changed between (37.0±5.4) and (47.2 ±27.8) µg·m-2, with the standard deviation between 14.9% and 58.9%. The highest concentration of ∑11PCBs was 6.8 ng·g-1DW, while the maximum deposition rate of reconstructed PCBs was up to 989.7 ng·m-2·a-1. The trend of deposition rate was first increasing and then decreasing. After the year 1980, the deposition rate was substantially decreasing, which was consistent with the prohibition of PCBs production in the United States in 1979. Meanwhile, the analysis of sediment samples in the lake near bog showed that concentration and maximum deposition rate of the lake sediment were comparable to those of the nearby bog. The concentrations of Di- to Hepta-PCB congeners were evenly distributed along the sediment profile. Therefore, lake sediments could not be used to analyze the historical sedimentary model of low order PCBs. This study reconstructed temporal and spatial variation of PCBs in atmospheric environment in different historical periods, which could provide basic data for the evaluation of regional environmental quality.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA