Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(52): 112307-112320, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831243

RESUMEN

Farmland has become a significant contributor to greenhouse gas (GHG) emissions, and research has shown that the addition of straw or biochar may be a viable method for mitigating these emissions. However, there is a lack of understanding regarding the comparative biotic and abiotic effects of straw and biochar amendments on GHG emissions. To address this knowledge gap, we conducted a meta-analysis of 100 published papers to quantify the impact of straw and biochar application on GHG emissions. Our findings indicate that straw application significantly increased CO2 and CH4 emissions from agricultural ecosystems by 46.2% and 113.5%, respectively, but did not have a significant effect on N2O emissions. Conversely, biochar amendment significantly reduced CO2, CH4, and N2O emissions by an average of 11.0%, 31.7%, and 22.8%, respectively. We also found that straw and biochar amendments increased soil pH, soil organic carbon (SOC), and C/N ratio, and there were significant differences between them. Moreover, straw application significantly increased the microbial biomass carbon (MBC) content and microbial quotient by 37.1% and 20.1%, respectively, while biochar application increased the MBC content by 25.0% without a significant effect on the microbial quotient. Furthermore, both straw and biochar applications promoted the nitrification process and increased the abundance of ammonia-oxidizing bacteria (AOB) by 50.7% with straw and by 57.5% and 75.1% with biochar for ammonia-oxidizing archaea (AOA) and AOB, respectively. The denitrification process was also stimulated by straw or biochar amendment, resulting in an increase in the abundance of nirK by 22.9% and 16.8%, respectively. Biochar amendment additionally increased the abundance of nosZ by 29.4%, indicating that the main reason for reducing N2O emissions through biochar application is the conversion of NO3--N to N2. Thus, compared to straw application, biochar application is a more effective method for reducing greenhouse gas emissions.


Asunto(s)
Betaproteobacteria , Gases de Efecto Invernadero , Carbono , Suelo/química , Ecosistema , Amoníaco , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Microbiología del Suelo , Carbón Orgánico/química , Agricultura
2.
J Org Chem ; 87(2): 1541-1544, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007065

RESUMEN

This work describes a concise manner to make a wide variety of mono- or disubstituted 2-amino isonicotinic acids via the corresponding 2,4-dioxo-carboxylic acid ethyl esters and ethyl 3-amino-3-iminopropionate hydrochloride. The reaction likely proceeds through an in situ decarboxylation process and is reminiscent of the Guareschi-Thorpe Condensation.


Asunto(s)
Aminoácidos , Ácidos Carboxílicos
3.
Huan Jing Ke Xue ; 42(6): 3000-3009, 2021 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-34032100

RESUMEN

This study intended to examine the influence of biochar application on soil carbon content under different tillage conditions. For this, an indoor incubation experiment was performed with treatments included wheat straw-derived biochar application (0, 5, and 20 g·kg-1) and soil with different tillage measures (ploughing and no-tillage). The effects of biochar addition on soil organic carbon (SOC), dissolved organic carbon (DOC), soil microbial biomass carbon (MBC), readily oxidized organic carbon (ROC), soil inorganic carbon (SIC), pH, water soluble calcium and magnesium, and soil CO2 emissions were analyzed. The results showed that:① Compared with the control, the contents of SOC, ROC, DOC, and water soluble Ca and Mg increased by 20.3%-105.6%, 0.5%-36.0%, 0.8%-30.5%, 3.5%-42.3%, and 2.4%-75.2% in the no-tillage treatments, respectively; and the contents of SOC, ROC, DOC, water-soluble Ca and Mg increased by 29.2%-145.1%, 1.3%-63.9%, 2.4%-55.6%, 18.2%-89.8%, and 10.1%-150.5% in the ploughing treatment, respectively, under different dosage biochar amendments, and was enhanced with an increase in the biochar application amount. Cumulative CO2 emissions were highest with biochar amendment at 5 g·kg-1 under the no-tillage soil condition; however, this increased with an increase in the biochar amount in the ploughing treatment. At the end of incubation experiment, the soil MBC content increased by 35.5%-45.7% compared with the control treatment; however, there was no significant effect on soil pH and SIC between the treatments. ② Compared with the ploughing treatment, the cumulative CO2 emissions, SOC, ROC, DOC, MBC, and water-soluble Ca and Mg contents of the no tillage treatment increased by 34.2%-79.0%, 8.9%-45.5%, 28.2%-73.9%, 40.4%-78.4%, 0.2%-131.7%, 8.7%-39.8%, and 0.3%-61.0%, respectively, while soil pH and SIC decreased by 0.08-0.17 unit and 2.4%-13.9%, respectively, under the same biochar amendment treatments. Overall, the addition of biochar significantly increased soil organic carbon, active organic carbon, soil water soluble calcium and magnesium content, and soil cumulative CO2 emissions, but no significant effect was observed on soil inorganic carbon content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA