Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.048
Filtrar
1.
Eur J Med Res ; 29(1): 456, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261917

RESUMEN

Ovarian cancer is an extremely malignant gynaecological tumour with a poor patient prognosis and is often associated with chemoresistance. Thus, exploring new therapeutic approaches to improving tumour chemosensitivity is important. The expression of transcription elongation factor B polypeptide 2 (TCEB2) gene is reportedly upregulated in ovarian cancer tumour tissues with acquired resistance, but the specific mechanism involved in tumour resistance remains unclear. In this study, we found that TCEB2 was abnormally highly expressed in cisplatin-resistant tumour tissues and cells. TCEB2 silencing also inhibited the growth and glycolysis of SKOV-3/cisplatin (DDP) and A2780/DDP cells. We further incubated human umbilical vein endothelial cells (HUVECs) with culture supernatants from cisplatin-resistant cells having TCEB2 knockdown. Results revealed that the migration, invasion, and angiogenesis of HUVECs were significantly inhibited. Online bioinformatics analysis revealed that the hypoxia-inducible factor-1A (HIF-1A) protein may bind to TCEB2, and TCEB2 silencing inhibited SKOV-3/DDP cell growth and glycolysis by downregulating HIF1A expression. Similarly, TCEB2 promoted HUVEC migration, invasion, and angiogenesis by upregulating HIF1A expression. In vivo experiments showed that TCEB2 silencing enhanced the sensitivity of ovarian cancer nude mice to cisplatin and that TCEB2 knockdown inhibited the glycolysis and angiogenesis of tumour cells. Our findings can serve as a reference for treating chemoresistant ovarian cancer.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica , Neoplasias Ováricas , Transducción de Señal , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ratones Desnudos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Angiogénesis
2.
Biomed Pharmacother ; 179: 117422, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276399

RESUMEN

Dysfunction of the Nav1.5, Cav1.2, and Kv channels could interfere with the AP and result in arrhythmias and even heart failure. We herein present a novel library of nuciferine analogs that target ion channels for the treatment of arrhythmias. Patch clamp measurements of ventricular myocytes revealed that 6a dramatically blocked both the INa and ICa without altering the currentvoltage relationship (including the activation potential and peak potential), accelerated the inactivation of Nav and Cav channels and delayed the resurrection of these channels after inactivation. Additionally, 6a significantly decreased the APA and RMP without affecting the APD30 or APD50. The IC50 values of 6a against Nav1.5 and Cav1.2 were 4.98 µM and 4.62 µM, respectively. Furthermore, 6a (10 µM) blocked IKs, IK1, and Ito with values of 17.01 %±2.54 %, 9.09 %±2.78 %, and 11.15 %±3.52 %, respectively. Surprisingly, 6a weakly inhibited hERG channels, suggesting a low risk of proarrhythmia. The cytotoxicity evaluation of 6a with the H9c2 cell line indicated that this compound was noncytotoxic. In vivo studies suggested that these novel nuciferine analogs could shorten the time of arrhythmia continuum induced by BaCl2 and normalize the HR, QRS, QT and QTc interval and the R wave amplitude. Moreover, 6a dose-dependently affected aconitine-induced arrhythmias and notably improved the cumulative dosage of aconitine required to evoke VP, VT, VF and CA in rats with aconitine-induced arrhythmia. In conclusion, nuciferine analogs could be promising ion channel blockers that could be further developed into antiarrhythmic agents.

3.
Proc Natl Acad Sci U S A ; 121(34): e2406519121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136995

RESUMEN

In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.


Asunto(s)
Proteínas de Ciclo Celular , Leucemia Promielocítica Aguda , Proteínas de Fusión Oncogénica , Factores de Transcripción , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Separación de Fases , Proteínas que Contienen Bromodominio
4.
Front Cell Infect Microbiol ; 14: 1419949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119294

RESUMEN

Human respiratory syncytial virus (HRSV) is the most prevalent pathogen contributing to acute respiratory tract infections (ARTI) in infants and young children and can lead to significant financial and medical costs. Here, we developed a simultaneous, dual-gene and ultrasensitive detection system for typing HRSV within 60 minutes that needs only minimum laboratory support. Briefly, multiplex integrating reverse transcription-recombinase polymerase amplification (RT-RPA) was performed with viral RNA extracted from nasopharyngeal swabs as a template for the amplification of the specific regions of subtypes A (HRSVA) and B (HRSVB) of HRSV. Next, the Pyrococcus furiosus Argonaute (PfAgo) protein utilizes small 5'-phosphorylated DNA guides to cleave target sequences and produce fluorophore signals (FAM and ROX). Compared with the traditional gold standard (RT-qPCR) and direct immunofluorescence assay (DFA), this method has the additional advantages of easy operation, efficiency and sensitivity, with a limit of detection (LOD) of 1 copy/µL. In terms of clinical sample validation, the diagnostic accuracy of the method for determining the HRSVA and HRSVB infection was greater than 95%. This technique provides a reliable point-of-care (POC) testing for the diagnosis of HRSV-induced ARTI in children and for outbreak management, especially in resource-limited settings.


Asunto(s)
ARN Viral , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Sensibilidad y Especificidad , Humanos , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/virología , ARN Viral/genética , Lactante , Pyrococcus furiosus/genética , Pyrococcus furiosus/aislamiento & purificación , Proteínas Argonautas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Límite de Detección , Nasofaringe/virología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Preescolar
5.
Int J Pediatr Otorhinolaryngol ; 184: 112050, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39191005

RESUMEN

OBJECTIVES: To evaluate and compare audiological outcomes of atresiaplasty and Bonebridge (BB) implantation in patients with unilateral congenital aural atresia (UCAA), to guide clinical decision-making. METHODS: Twenty-seven subjects diagnosed with UCAA were included in the study. Thirteen were implanted with the BB, while 14 undergone atresiaplasty. All patients underwent pre-and post-surgery examinations, including pure-tone audiometry, sound field threshold (SFT), speech reception threshold (SRT), word recognition score (WRS), and horizontal sound source localization tests. RESULTS: (1) Postoperatively, the average SFT decreased by 11.79 ± 5.93 dB HL in the atresiaplasty group and by 24.46 ± 9.36 dB HL in the BB group, with a significantly greater decrease in the BB group compared to the atresiaplasty group (P < 0.05). (2) Both groups demonstrated a significant improvement in average disyllabic WRS postoperatively under normal ear-masking conditions, with the BB group showing a significantly higher improvement than the atresiaplasty group. (3) When the speech signal was presented from the CAA side with noise from the normal hearing side, both surgical groups exhibited a significant decrease in postoperative signal-to-noise ratio compared to preoperative levels, with improvements of 2.14 ± 2.95 dB SNR in the atresiaplasty group and 4.92 ± 5.83 dB SNR in the BB group (P < 0.05). (4) The average minimum audible angle preoperative in the atresiaplasty group was 29.71 ± 18.42°, which decreased to 18.1 ± 10.07° at 6 months postoperatively, showing a statistically significant improvement (P < 0.05). CONCLUSION: We concluded that both atresiaplasty and Bonebridge implantation can significantly improve speech perception under both quiet and noisy conditions in children with UCAA. BoneBridge implantation appears to provide better audiological outcomes than atresiaplasty. Atresiaplasty can significantly improve the accuracy of sound localization. No significant improvement in sound localization accuracy was observed in the short period after Bonebridge implantation. Further research should be conducted with a larger sample size and longer follow-up time.


Asunto(s)
Audiometría de Tonos Puros , Oído , Humanos , Femenino , Masculino , Niño , Resultado del Tratamiento , Oído/anomalías , Oído/cirugía , Anomalías Congénitas/cirugía , Prótesis Anclada al Hueso , Adolescente , Preescolar , Percepción del Habla/fisiología , Estudios Retrospectivos , Prueba del Umbral de Recepción del Habla , Umbral Auditivo/fisiología
6.
Cell Death Differ ; 31(9): 1184-1201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103535

RESUMEN

Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Macrófagos , Fagocitosis , Fosfolípidos , Fosfolípidos/metabolismo , Macrófagos/metabolismo , Animales , Ratones , Humanos , Receptor Toll-Like 2/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Neoplasias/patología , Células RAW 264.7
7.
J Hazard Mater ; 478: 135526, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153300

RESUMEN

Phenol and p-cresol are two common toxic small molecules related to various diseases. Existing reports confirmed that high L-tyrosine in the daily diet can increase the concentration of phenolic compounds in blood and urine. L-tyrosine is a common component of protein-rich foods. Some anaerobic bacteria in the gut can convert non-toxic l-tyrosine into these two toxic phenolic compounds, phenol and p-cresol. Existing methods have been constructed for measuring the concentration of phenolic compound in feces. However, there is still a lack of direct visual evidence to measure the phenolic compounds in the intestine. In this study, we aimed to construct a whole-cell biosensor for phenolic compounds detection based on the dmpR, the regulator from the phenol metabolism cluster. The commensal bacterium Citrobacter amalonaticus PS01 was selected and used as the chassis. Compared with the biosensor based on ECN1917, the biosensor PS01[dmpR] could better implant into the mouse gut through gavage and showed a higher sensitive to phenolic compound. And the concentration of phenolic compounds in the intestines could be observed with the help of in vivo imaging system using PS01[dmpR]. This paper demonstrated endogenous phenol synthesis in the gut and the strategy of using commensal bacteria to construct whole-cell biosensors for detecting small molecule compounds in the intestines.


Asunto(s)
Técnicas Biosensibles , Intestinos , Animales , Citrobacter/metabolismo , Cresoles/metabolismo , Cresoles/toxicidad , Fenoles/toxicidad , Ratones , Fenol/análisis , Fenol/toxicidad , Tirosina/metabolismo
8.
Int Immunopharmacol ; 141: 113009, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39191123

RESUMEN

Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.


Asunto(s)
Diabetes Mellitus Experimental , Ferrocianuros , Macrófagos , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ferrocianuros/química , Ferrocianuros/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Masculino , Humanos , Ratas Sprague-Dawley , Circonio/química , Células Endoteliales de la Vena Umbilical Humana , Ratones , Células Endoteliales/efectos de los fármacos , Nanopartículas/química , Células RAW 264.7 , Activación de Macrófagos/efectos de los fármacos
9.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108036

RESUMEN

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Femenino , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Pronóstico , Mapas de Interacción de Proteínas , Receptores Fc/genética , Receptores Fc/metabolismo , Microambiente Tumoral/inmunología
10.
Arthroscopy ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154667

RESUMEN

PURPOSE: To evaluate the efficacy and safety of intra-articular injection of mesenchymal stem cells (MSCs) versus hyaluronic acid (HA) in the treatment of knee osteoarthritis (KOA). METHODS: Eligible randomized controlled trials (RCTs) were identified through a search of PubMed, Embase, the Cochrane Library, Web of Science, SinoMed, and CNKI databases from inception to March 2024. For meta-analysis, data on clinical outcomes were measured using visual analog scale (VAS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and data on cartilage repair were measured using the Whole-Organ Magnetic Resonance Imaging Score (WORMS); data on safety were evaluated by the incidence of adverse events. Two researchers independently read the included literature, extracted data and evaluated the quality, used the Cochrane risk bias assessment tool for bias risk assessment, and used RevMan5.3 software for meta-analysis. RESULTS: Ten RCTs involving 818 patients with KOA ranging from I to Ⅲ on the Kellgren-Lawrence grading scale were included in this meta-analysis. Meta-analysis results showed that at 12 months, the WOMAC total score (mean difference [MD] = -10.22, 95% confidence interval [CI]: -14.86 to -5.59, P < .0001, Z = 4.32), VAS score (MD = -1.31, 95% CI: -1.90 to -0.73, P < .0001, Z = 4.40); and WORMS score (MD = -26.01, 95% CI: -31.88 to -20.14, P < .001, Z = 8.69) of the MSCs group all decreased significantly (P < .05) compared with the HA control group and reached the minimal clinically important differences. Furthermore, there was no significant difference in the incidence of adverse events (relative risk = 1.54, 95% CI: 0.85-2.79, P = .16, I2 = 0) between the 2 groups (P > .05). CONCLUSIONS: Compared with HA, intra-articular injection of MSCs therapy appears to alleviate joint pain effectively, improving clinical function of KOA patients. These benefits are observed to last for at least 12 months without an increase in adverse events. Due to limited, varied, and lacking minimal clinically important differences results in existing literature, further research is needed. LEVEL OF EVIDENCE: Level I, meta-analysis of Level I studies.

11.
Biomed Pharmacother ; 179: 117324, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216451

RESUMEN

Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.

12.
J Control Release ; 374: 577-589, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208933

RESUMEN

Growth factor holds great promise for bone regeneration, and spatiotemporal control of their expressing through site-specific reactions is crucial but challenging for on-demand therapy. In this study, we present the development of a novel unnatural amino acids (UAAs)-triggered therapeutic switch (UATS) system, composed of an orthogonal aminoacyl-tRNA-synthase (aaRS)-tRNA pair and a bone morphogenetic protein 2 (BMP2) gene harboring premature stop codon, which enable in situ and on-demand initiation of the expression of BMP2. The resulting UATS system allowed specifically control of base expressing on the BMP2 mRNA that switched to the BMP2 protein with complete structure and function to facilitate bone regeneration. Our investigations showed that the UATS system exhibits remarkable attributes of rapid, sensitive, reversible, and sustained BMP2 expression both in vitro and in vivo settings. Moreover, the implantation of microencapsulated cells with UATS system is applied to a mouse femur defect model, demonstrating high effciency in controlled expressing of BMP2 protein and substantial repair of bone defect following oral administration of UAAs. Therefore, our findings underscore the great potential of UATS system for on-demand awakening of functional growth factor, thus offering promising prospects in the realm of regenerative medicine.

13.
Biomedicines ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39200098

RESUMEN

Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.

14.
J Food Prot ; 87(9): 100338, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103091

RESUMEN

Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.


Asunto(s)
Acrilamida , Contaminación de Alimentos , Manipulación de Alimentos , Productos Finales de Glicación Avanzada , Calor , Reacción de Maillard , Humanos , Contaminación de Alimentos/análisis , Furaldehído/análogos & derivados , Hidrocarburos Policíclicos Aromáticos , Culinaria
15.
Artículo en Inglés | MEDLINE | ID: mdl-39102376

RESUMEN

Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.

16.
Imeta ; 3(4): e216, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135697

RESUMEN

Hundreds of microbiota gene expressions are significantly different between healthy and diseased humans. The "bottleneck" preventing a mechanistic dissection of how they affect host biology/disease is that many genes are encoded by nonmodel gut commensals and not genetically manipulatable. Approaches to efficiently identify their gene transfer methodologies and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. This paper will introduce a step-by-step protocol to identify gene transfer conditions and build the gene manipulation tools for nonmodel gut microbes, focusing on Gram-negative Bacteroidia and Gram-positive Clostridia organisms. This protocol enables us to identify gene transfer methods and develop gene manipulation tools without prior knowledge of their genome sequences, by targeting bacterial 16s ribosomal RNAs or expanding their compatible replication origins combined with clustered regularly interspaced short palindromic repeats machinery. Such an efficient and generalizable approach will facilitate functional studies that causally connect gut microbiota genes to host diseases.

17.
Viruses ; 16(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066169

RESUMEN

BACKGROUND: T-cell responses can be protective or detrimental during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, the underlying mechanism is poorly understood. METHODS: In this study, we screened 144 15-mer peptides spanning the SARS-CoV-2 spike, nucleocapsid (NP), M, ORF8, ORF10, and ORF3a proteins and 39 reported SARS-CoV-1 peptides in peripheral blood mononuclear cells (PBMCs) from nine laboratory-confirmed coronavirus disease 2019 (COVID-19) patients (five moderate and four severe cases) and nine healthy donors (HDs) collected before the COVID-19 pandemic. T-cell responses were monitored by IFN-γ and IL-17A production using ELISA, and the positive samples were sequenced for the T cell receptor (TCR) ß chain. The positive T-cell responses to individual SARS-CoV-2 peptides were validated by flow cytometry. RESULTS: COVID-19 patients with moderate disease produced more IFN-γ than HDs and patients with severe disease (moderate vs. HDs, p < 0.0001; moderate vs. severe, p < 0.0001) but less IL-17A than those with severe disease (p < 0.0001). A positive correlation was observed between IFN-γ production and T-cell clonal expansion in patients with moderate COVID-19 (r = 0.3370, p = 0.0214) but not in those with severe COVID-19 (r = -0.1700, p = 0.2480). Using flow cytometry, we identified that a conserved peptide of the M protein (Peptide-120, P120) was a dominant epitope recognized by CD8+ T cells in patients with moderate disease. CONCLUSION: Coordinated IFN-γ production and clonal expansion of SARS-CoV-2-specific T cells are associated with disease resolution in COVID-19. Our findings contribute to a better understanding of T-cell-mediated immunity in COVID-19 and may inform future strategies for managing and preventing severe outcomes of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Mapeo Epitopo , Epítopos de Linfocito T , Interferón gamma , SARS-CoV-2 , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , COVID-19/inmunología , COVID-19/virología , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Interleucina-17/inmunología , Interleucina-17/metabolismo , Anciano , Linfocitos T/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T CD8-positivos/inmunología
18.
BMC Psychiatry ; 24(1): 484, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956530

RESUMEN

BACKGROUND: Many factors contribute to quality of life (QoL) in patients with schizophrenia, yet limited research examined these factors in patients in China. This cross-sectional study explores subjective QoL and its associated factors in patients. METHODS: The QoL was assessed using the Schizophrenia Quality of Life Scale (SQLS). Clinical symptoms were evaluated using the Brief Psychiatric Rating Scale (BPRS) and seven factors were extracted. Patient Health Questionnaire-9 (PHQ-9), and Generalized Anxiety Disorder Scale (GAD-7) were used to assess depression and anxiety. Cognitive impairment was assessed using the Ascertain Dementia 8 (AD8). The Treatment Emergent Symptom Scale (TESS) and Rating Scale for Extrapyramidal Side Effects (RSESE) were used to evaluate the side effects of medications. RESULTS: We recruited 270 patients (male:142,52.6%, mean age:41.9 ± 9.4 years). Positive correlations were observed between SQLS and its subdomains with the total score of BPRS, PHQ-9, GAD-7, AD8, TESS, and RSESE (all P < 0.005). Patients who were taking activating second-generation antipsychotics (SGAs) had lower scores on total SQLS, Motivation/ Energy domain of SQLS (SQLS-ME) as well as Symptoms/ Side effects domain of SQLS (SQLS-SS) compared to those taking non-activating SGAs (all P < 0.005). Multiple regression analysis showed that depressive/ anxiety symptoms and cognitive impairment had significant negative effects on QoL (P ≤ 0.001), while activating SGAs had a positive effect (P < 0.005). Blunted affect and unemployment were inversely associated with the motivation/energy domain (P < 0.001). CONCLUSION: Our findings emphasize the important role of depression/anxiety symptoms and cognitive impairment in the QoL of patients with chronic schizophrenia. Activating SGAs and employment may improve the QoL of these individuals. TRIAL REGISTRATION: This protocol was registered at chictr.org.cn (Identifier: ChiCTR2100043537).


Asunto(s)
Antipsicóticos , Empleo , Calidad de Vida , Esquizofrenia , Humanos , Masculino , Calidad de Vida/psicología , Esquizofrenia/tratamiento farmacológico , Femenino , Antipsicóticos/uso terapéutico , Antipsicóticos/efectos adversos , Estudios Transversales , Adulto , Persona de Mediana Edad , China , Psicología del Esquizofrénico , Enfermedad Crónica , Disfunción Cognitiva/psicología , Ansiedad/psicología , Depresión/psicología
19.
Phys Chem Chem Phys ; 26(27): 18847-18853, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946485

RESUMEN

Tuning the magnetic properties of two-dimensional van der Waals ferromagnets has special importance for their practical applications. Using first-principles calculations, we investigate the magnetic properties of Co-doped Fe3GaTe2 with different Co concentrations and different Co atomic sites. Calculation results show that Fe or Co atoms with relatively lower atomic concentrations preferentially occupy Fe1 sites with interlayer coupling, which is more energetically favorable. As the doping concentration of Co atoms increases, the total magnetic moment of the doped system decreases, while the average atomic magnetic moments of Fe1 and Fe2 increase and decrease, respectively, with Fe1 reaching ∼2.08µB. The spin polarization of the doped model 2Co-2 near the Fermi energy level is significantly reduced, while 4Co-3 exhibits an enhanced trend. At some doping level, a phase change from ferromagnetism to antiferromagnetism appears at high Co concentration. These results provide a theoretical basis for experimental studies and valuable information for the development of Fe3GaTe2-based spintronic devices.

20.
J Am Chem Soc ; 146(28): 18831-18835, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958387

RESUMEN

The reactions of NHB-stabilized disilyne (NHB)Si≡Si(NHB) (1, NHB = [ArN(CMe)2NAr]B, Ar = 2,6-iPr2C6H3) with internal alkynes were described. Reaction of disilyne 1 with one equivalent of bis(trimethylsilyl)acetylene led to a reversible [1 + 2] cycloaddition of one of the Si atoms with the alkyne and the insertion of the other Si into one of Ar rings with the formation of a silirenyl-silepin 2, whereas reaction of 1 with two equivalents of Me3SiCCSiMe3 resulted in the formal addition of the Csp-Si bond to the Si≡Si triple bond to give disilene (NHB)(Me3Si)Si=Si(CCSiMe3)(NHB). Reaction of 1 with 1,3-diyne Me3SiCCCCSiMe3 yielded a 1,2-disilacyclobut-3-ene via cycloaddition, ring expansion, and NHB 1,2-shift sequence. The initial [1 + 2] cycloaddition of one of the silicon atoms with an alkyne was strongly supported by DFT calculations. The results demonstrated the significant bis(silylene) character and rich synthetic potential of bis(boryl) disilyne 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA