Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38932215

RESUMEN

BACKGROUND: Lipids, as a fundamental cell component, play an regulating role in controlling the different cellular biological processes involved in viral infections. A notable feature of coronavirus disease 2019 (COVID-19) is impaired lipid metabolism. The function of lipophagy-related genes in COVID-19 is unknown. The present study aimed to investigate biomarkers and drug targets associated with lipophagy and lipophagy-based therapeutic agents for COVID-19 through bioinformatics analysis. METHODS: Lipophagy-related biomarkers for COVID-19 were identified using machine learning algorithms such as random forest, Support Vector Machine-Recursive Feature Elimination, Generalized Linear Model, and Extreme Gradient Boosting in three COVID-19-associated GEO datasets: scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496). The cMAP database was searched for potential COVID-19 medications. RESULTS: The lipophagy pathway was downregulated, and the lipid droplet formation pathway was upregulated, resulting in impaired lipid metabolism. Seven lipophagy-related genes, including ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2, were used as biomarkers and drug targets for COVID-19. Moreover, lipophagy may play a role in COVID-19 pathogenesis. As prospective drugs for treating COVID-19, seven potential downregulators (phenoxybenzamine, helveticoside, lanatoside C, geldanamycin, loperamide, pioglitazone, and trichostatin A) were discovered. These medication candidates showed remarkable binding energies against the seven biomarkers. CONCLUSIONS: The lipophagy-related genes ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2 can be used as biomarkers and drug targets for COVID-19. Seven potential downregulators of these seven biomarkers may have therapeutic effects for treating COVID-19.


Asunto(s)
Antivirales , Biomarcadores , Tratamiento Farmacológico de COVID-19 , COVID-19 , Metabolismo de los Lípidos , SARS-CoV-2 , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , SARS-CoV-2/genética , COVID-19/virología , Metabolismo de los Lípidos/efectos de los fármacos , Antivirales/uso terapéutico , Antivirales/farmacología , Biología Computacional/métodos , Aprendizaje Automático , Lactamas Macrocíclicas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Ácidos Hidroxámicos/farmacología , Benzoquinonas/farmacología , Benzoquinonas/uso terapéutico
2.
Comput Biol Med ; 150: 106134, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201886

RESUMEN

COVID-19 pandemic poses a severe threat to public health. However, so far, there are no effective drugs for COVID-19. Transcriptomic changes and key genes related to Th2 cells in COVID-19 have not been reported. These genes play an important role in host interactions with SARS-COV-2 and may be used as promising target. We analyzed five COVID-19-associated GEO datasets (GSE157103, GSE152641, GSE171110, GSE152418, and GSE179627) using the xCell algorithm and weighted gene co-expression network analysis (WGCNA). Results showed that 5 closely correlated modular genes to COVID-19 and Th2 cell enrichment levels, including purple, blue, pink, tan and turquoise, were intersected with differentially expressed genes (DEGs) and 648 shared genes were obtained. GO and KEGG pathway enrichment analyses revealed that they were enriched in cell proliferation, differentiation, and immune responses after virus infection. The most significantly enriched pathway involved the regulation of viral life cycle. Three key genes, namely CCNB1, BUB1, and UBE2C, may clarify the pathogenesis of COVID-19 associated with Th2 cells. 11 drug candidates were identified that could down-regulate three key genes using the cMAP database and demonstrated strong drugs binding energies aganist the three keygenes using molecular docking methods. BUB1, CCNB1 and UBE2C were identified key genes for COVID-19 and could be promising therapeutic targets.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2/genética , Linfocitos T Colaboradores-Inductores
3.
Nat Prod Res ; 36(23): 6060-6063, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35200071

RESUMEN

Geraniin is a polyphenolic compound first isolated from Geranium thunbergii. The major protease (Mpro), namely 3 C-like protease (3CLpro), of coronaviruses is considered an attractive drug target as it is essential for the processing and maturation of viral polyproteins. Thus, our primary goal is to explore the efficiency of geraniin on 3CLpro of SARS-CoV-2 using the computational biology strategy. In this work, we studied the anti-coronavirus effect of geraniin in vitro and its potential inhibitory mode against the 3CLpro of SARS-CoV-2. We found that geraniin inhibited HCoV-OC43 coronavirus-infected cells during the attachment and penetration phases. Molecular docking and dynamics simulations exhibited that geraniin had a strong binding affinity and high stable binding to 3CLpro of SARS-CoV-2. Geraniin showed a strong inhibitory activity on coronavirus and may be a potential inhibitor of SARS-CoV-2 3CLpro.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Proteasas 3C de Coronavirus , Simulación del Acoplamiento Molecular , Cisteína Endopeptidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA