Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 194: 105518, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532332

RESUMEN

Diaphorina citri Kuwayama is of great concern because of its ability to transmit devastating citrus greening illness (Huanglongbing). One strategy for controlling HLB may involve limiting the spread of D. citri. Insecticides using dsRNA target genes may be a useful option to control D. citri. The ecdysone receptor (EcR) and ultraspiracle (USP) are crucial for the growth and reproduction of insects. This study identified the genes for D. citri ecdysone receptor (DcEcR) and ultraspiracle (DcUSP). According to the qPCR data, DcUSP peaked at the 5th-instar nymph stage, while DcEcR peaked at the adult stage. Females expressed DcEcR and DcUSP at much higher levels than males. RNAi was used to examine DcEcR and DcUSP function. The findings demonstrated that inhibition of DcEcR and DcUSP delayed nymph development and decreased survival and eclosion rates. dsEcR caused adults to develop deformed wings, and dsUSP caused nymphs to wither and die. Female adult ovaries developed slowly, and the females laid fewer eggs. Additionally, DcEcR and DcUSP were inhibited, increasing D. citri susceptibility to pesticides. These findings suggest that DcEcR and DcUSP are critical for D. citri development, growth, and reproduction and may serve as potential targets for D. citri management.


Asunto(s)
Citrus , Hemípteros , Insecticidas , Plaguicidas , Receptores de Esteroides , Animales , Femenino , Masculino , Insecticidas/farmacología , Receptores de Esteroides/genética , Hemípteros/fisiología
2.
Pestic Biochem Physiol ; 191: 105361, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963933

RESUMEN

The citrus industry has suffered severe losses as a result of Huanglongbing spread by Diaphorina citri. Controlling the population of D. citri is the key to preventing and controlling the spread of Huanglongbing. Ecdysteroids are key hormones that regulate insect development and reproduction. Therefore, the Halloween gene family involved in the ecdysone synthesis of D. citri is an ideal target for controlling the population growth of this insect. In this study, we successfully cloned four Halloween genes expressed during D. citri development. Silencing of one of the four genes resulted in a significant decrease in 20E titers in nymphs and significant decreases in the developmental, survival and emergence rates. Inhibiting Halloween gene expression in adults impeded the growth of the female ovary, diminished yolk formation, lowered vitellogenin transcription levels, and hence impaired female fecundity. This showed that Halloween genes were required for D. citri development and reproduction. DcCYP315A1 and DcCYP314A1 were highly expressed when D. citri was exposed to thiamethoxam and cypermethrin, and silencing these two genes made D. citri more sensitive to these two pesticides. Inhibition of DcCYP315A1 and DcCYP314A1 expression not only significantly delayed the development and reproduction of D. citri but also increased its susceptibility to pesticides. Therefore, these two genes are more suitable as potential target genes for controlling D. citri.


Asunto(s)
Citrus , Hemípteros , Plaguicidas , Animales , Hemípteros/fisiología , Tiametoxam , Ninfa/genética , Reproducción/genética , Citrus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA