Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuron ; 106(4): 649-661.e4, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197063

RESUMEN

Working memory relies on the dorsolateral prefrontal cortex (dlPFC), where microcircuits of pyramidal neurons enable persistent firing in the absence of sensory input, maintaining information through recurrent excitation. This activity relies on acetylcholine, although the molecular mechanisms for this dependence are not thoroughly understood. This study investigated the role of muscarinic M1 receptors (M1Rs) in the dlPFC using iontophoresis coupled with single-unit recordings from aging monkeys with naturally occurring cholinergic depletion. We found that M1R stimulation produced an inverted-U dose response on cell firing and behavioral performance when given systemically to aged monkeys. Immunoelectron microscopy localized KCNQ isoforms (Kv7.2, Kv7.3, and Kv7.5) on layer III dendrites and spines, similar to M1Rs. Iontophoretic manipulation of KCNQ channels altered cell firing and reversed the effects of M1R compounds, suggesting that KCNQ channels are one mechanism for M1R actions in the dlPFC. These results indicate that M1Rs may be an appropriate target to treat cognitive disorders with cholinergic alterations.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Memoria a Corto Plazo/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptor Muscarínico M1/metabolismo , Animales , Femenino , Macaca mulatta , Masculino
2.
Neurobiol Stress ; 11: 100187, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832507

RESUMEN

The prefrontal cortex (PFC) mediates higher cognition but is impaired by stress exposure when high levels of catecholamines activate calcium-cAMP-protein kinase A (PKA) signaling. The current study examined whether stress and increased cAMP-PKA signaling in rat medial PFC (mPFC) reduce pyramidal cell firing and impair working memory by activating KCNQ potassium channels. KCNQ2 channels were found in mPFC layers II/III and V pyramidal cells, and patch-clamp recordings demonstrated KCNQ currents that were increased by forskolin or by chronic stress exposure, and which were associated with reduced neuronal firing. Low dose of KCNQ blockers infused into rat mPFC improved cognitive performance and prevented acute pharmacological stress-induced deficits. Systemic administration of low doses of KCNQ blocker also improved performance in young and aged rats, but higher doses impaired performance and occasionally induced seizures. Taken together, these data demonstrate that KCNQ channels have powerful influences on mPFC neuronal firing and cognitive function, contributing to stress-induced PFC dysfunction.

3.
Cereb Cortex ; 28(3): 974-987, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108498

RESUMEN

The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.


Asunto(s)
Memoria a Corto Plazo/fisiología , Neuronas/citología , Densidad Postsináptica/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Movimientos Oculares/efectos de los fármacos , Movimientos Oculares/fisiología , Femenino , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Neuronas/metabolismo , Densidad Postsináptica/ultraestructura , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/ultraestructura , Ratas , Receptores de Glutamato Metabotrópico/ultraestructura , Aprendizaje Espacial/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707050

RESUMEN

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Asunto(s)
Envejecimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas tau/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Macaca mulatta , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
5.
Prog Mol Biol Transl Sci ; 122: 211-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24484703

RESUMEN

The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Animales , Humanos , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 110(29): 12078-83, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818597

RESUMEN

The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia.


Asunto(s)
Cognición/fisiología , N-Metilaspartato/metabolismo , Corteza Prefrontal/fisiología , Receptores Nicotínicos/metabolismo , Sinapsis/fisiología , Percepción Visual/fisiología , Acetilcolina/metabolismo , Aconitina/análogos & derivados , Análisis de Varianza , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes , Agonistas Colinérgicos/administración & dosificación , Agonistas Colinérgicos/farmacología , Antagonistas Colinérgicos/administración & dosificación , Antagonistas Colinérgicos/farmacología , Femenino , Iontoforesis , Macaca mulatta , Masculino , Mecamilamina , Microscopía Inmunoelectrónica , Fenoles , Piperidinas , Corteza Prefrontal/metabolismo , Quinuclidinas , Conducta Espacial/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7
7.
Neuron ; 77(4): 736-49, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23439125

RESUMEN

Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPARs) contributed background depolarization to sustain network firing. In contrast, many Response cells were sensitive to AMPAR blockade and increased firing after systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer's disease profoundly impair cognition.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Mapeo Encefálico , Simulación por Computador , Macaca mulatta , Masculino , Modelos Neurológicos , Neuronas/fisiología , Células Piramidales/fisiología , Receptores AMPA/fisiología
8.
Yale J Biol Med ; 85(1): 45-58, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22461743

RESUMEN

The prefrontal cortex (PFC) is among the most evolved brain regions, contributing to our highest order cognitive abilities. It regulates behavior, thought, and emotion using working memory. Many cognitive disorders involve impairments of the PFC. A century of discoveries at Yale Medical School has revealed the neurobiology of PFC cognitive functions, as well as the molecular needs of these circuits. This work has led to the identification of therapeutic targets to treat cognitive disorders. Recent research has found that the noradrenergic α2A agonist guanfacine can improve PFC function by strengthening PFC network connections via inhibition of cAMP-potassium channel signaling in postsynaptic spines. Guanfacine is now being used to treat a variety of PFC cognitive disorders, including Tourette's Syndrome and Attention Deficit Hyperactivity Disorder (ADHD). This article reviews the history of Yale discoveries on the neurobiology of PFC working memory function and the identification of guanfacine for treating cognitive disorders.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Descubrimiento de Drogas/historia , Guanfacina/uso terapéutico , Universidades , Animales , Trastornos del Conocimiento/fisiopatología , Guanfacina/farmacología , Historia del Siglo XX , Humanos , Memoria a Corto Plazo/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Universidades/historia
9.
Front Integr Neurosci ; 6: 125, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23293590

RESUMEN

The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is norepinephrine. Previous studies have reported aging-related changes in the sensitivity of mPFC-dependent tasks to noradrenergic agonist drugs, such as guanfacine. Here, we assessed the effects of yohimbine, an alpha-2 noradrenergic antagonist, in cohorts of younger and older rats in a classic test of spatial working memory (using a T-maze). Older rats (23-29 mo.) were impaired by a lower dose of yohimbine compared to younger animals (5-10 mo.). To determine if the drug acts on alpha-2 noradrenergic receptors in mPFC and if its effects are specific to memory-guided performance, we made infusions of yohimbine into mPFC of a cohort of young rats (6 mo.) using an operant delayed response task. The task involved testing rats in blocks of trials with memory- and stimulus-guided performance. Yohimbine selectively impaired memory-guided performance and was associated with error perseveration. Infusions of muscimol (a GABA-A agonist) at the same sites also selectively impaired memory-guided performance, but did not lead to error perseveration. Based on these results, we propose several potential interpretations for the role for the noradrenergic system in the performance of delayed response tasks, including the encoding of previous response locations, task rules (i.e., using a win-stay strategy instead of a win-shift strategy), and performance monitoring (e.g., prospective encoding of outcomes).

10.
Yale J Biol Med ; 84(4): 479-82, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22180685

RESUMEN

Our brain is sensitive to stress. Both acute and chronic stress cause cognitive deficits and induce chronic disorders such as drug addiction. In a June 2011 conference at Yale entitled "The Science of Stress: Focus on the Brain, Breaking Bad Habits, and Chronic Disease," Drs. Amy Arnsten and Sherry Mckee discussed the roles of prefrontal cortex in the treatment of stress impairments and addiction. Medications to strengthen the prefrontal function, such as prazosin and guanfacine, may reduce the harm of stress and help overcome smoking and alcohol abuse.


Asunto(s)
Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Alcoholismo/complicaciones , Alcoholismo/tratamiento farmacológico , Alcoholismo/fisiopatología , Enfermedad Crónica/tratamiento farmacológico , Humanos , Corteza Prefrontal/fisiopatología , Fumar/efectos adversos , Estrés Psicológico/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología
11.
Nature ; 476(7359): 210-3, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21796118

RESUMEN

Many of the cognitive deficits of normal ageing (forgetfulness, distractibility, inflexibility and impaired executive functions) involve prefrontal cortex (PFC) dysfunction. The PFC guides behaviour and thought using working memory, which are essential functions in the information age. Many PFC neurons hold information in working memory through excitatory networks that can maintain persistent neuronal firing in the absence of external stimulation. This fragile process is highly dependent on the neurochemical environment. For example, elevated cyclic-AMP signalling reduces persistent firing by opening HCN and KCNQ potassium channels. It is not known if molecular changes associated with normal ageing alter the physiological properties of PFC neurons during working memory, as there have been no in vivo recordings, to our knowledge, from PFC neurons of aged monkeys. Here we characterize the first recordings of this kind, revealing a marked loss of PFC persistent firing with advancing age that can be rescued by restoring an optimal neurochemical environment. Recordings showed an age-related decline in the firing rate of DELAY neurons, whereas the firing of CUE neurons remained unchanged with age. The memory-related firing of aged DELAY neurons was partially restored to more youthful levels by inhibiting cAMP signalling, or by blocking HCN or KCNQ channels. These findings reveal the cellular basis of age-related cognitive decline in dorsolateral PFC, and demonstrate that physiological integrity can be rescued by addressing the molecular needs of PFC circuits.


Asunto(s)
Envejecimiento/fisiología , Macaca mulatta/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Potenciales de Acción/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Refuerzo Biomédico , Señales (Psicología) , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Guanfacina/farmacología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/metabolismo , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA