Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(32): 21576-21584, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094189

RESUMEN

Ultrathin organic nanofibers (UTONFs) represent an emerging class of nanomaterials as they carry a set of favorable attributes, including ultrahigh specific surface area, lightweight, and mechanical flexibility, over inorganic counterparts, for use in biomedicine and nanotechnology. However, precise synthesis of uniform UTONFs (diameter ≤ 2 nm) with tailored functionalities remained challenging. Herein, we report robust multifunctional UTONFs using hydrophobic interaction-driven self-assembly of amphiphilic alternating peptoids containing hydrophobic photoresponsive azobenzene and hydrophilic hydroxyl moieties periodically arranged along the peptoid backbone. Notably, the as-crafted UTONFs are approximately 2 nm in diameter and tens of micrometers in length (an aspect ratio, AR, of ∼10000), exemplifying the UTONFs with the smallest diameter yielded via self-assembly. Intriguingly, UTONFs were disassembled into short-segmented nanofibers and controllably reassembled into UTONFs, resembling "step-growth polymerization". Photoisomerization of azobenzene moieties leads to reversible transformation between UTONFs and spherical micelles. Such meticulously engineered UTONFs demonstrate potential for catalysis, bioimaging, and antibacterial therapeutics. Our study highlights the significance of the rational design of amphiphiles containing alternating hydrophobic and hydrophilic moieties in constructing otherwise unattainable extremely thin UTONFs with ultrahigh AR and stimuli-responsive functionalities for energy and bionanotechnology.

2.
Adv Mater ; 36(16): e2312724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197470

RESUMEN

The development of high-reactive single-atom catalysts (SACs) based on long-range-ordered ultrathin organic nanomaterials (UTONMs) (i.e., below 3 nm) provides a significant tactic for the advancement in hydrogen evolution reactions (HER) but remains challenging. Herein, photo-responsive ultrathin peptoid nanobelts (UTPNBs) with a thickness of ≈2.2 nm and micron-scaled length are generated using the self-assembly of azobenzene-containing amphiphilic ternary alternating peptoids. The pendants hydrophobic conjugate stacking mechanism reveals the formation of 1D ultralong UTPNBs, whose thickness is dictated by the length of side groups that are linked to peptoid backbones. The photo-responsive feature is demonstrated by a reversible morphological transformation from UTPNBs to nanospheres (21.5 nm) upon alternative irradiation with UV and visible lights. Furthermore, the electrocatalyst performance of these aggregates co-decorated with nitrogen-rich ligand of terpyridine (TE) and uniformly-distributed atomic platinum (Pt) is evaluated toward HER, with a photo-controllable electrocatalyst activity that highly depended on both the presence of Pt element and structural characteristic of substrates. The Pt-based SACs using TE-modified UTPNBs as support exhibit a favorable electrocatalytic capacity with an overpotential of ≈28 mV at a current density of 10 mA cm-2. This work presents a promising strategy to fabricate stimuli-responsive UTONMs-based catalysts with controllable HER catalytic performance.

3.
Exploration (Beijing) ; 3(5): 20220141, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37933289

RESUMEN

Bladder cancer (BCa) is one of the most common malignancies worldwide. Although multiple efforts have been made, the 5-year survival rate of patients with BCa remains unchanged in recent years. Overexpression of the epidermal growth factor receptor (EGFR) is found in ≈74% of BCa tissue specimens; however, current EGFR-based targeted therapies show little benefit for BCa patients, as the EGFR downstream pathways appear to be circumvented by other receptor tyrosine kinases (RTKs). In this study, two natural products are identified, namely triptolide (TPL) and hesperidin (HSP), that target and inhibit the EGFR and its downstream PI3K/AKT pathway in BCa. To synergistically combine triptolide and hesperidin, a succinic acid linker was employed to conjugate them and formed an amphiphilic TPL-HSP EGFR-targeting prodrug (THE), which further self-assembled to generate nanoparticles (THE NPs). These NPs allowed the EGFR-targeted delivery of the triptolide and hesperidin, and simultaneous inhibition of the EGFR and PI3K/AKT both in vitro and in vivo. This study provides a promising EGFR-targeted delivery approach with the dual inhibition of the EGFR and PI3K/AKT, while also exhibiting a high drug loading and low toxicity. Our formulation may be a suitable option to deliver natural products for BCa treatment by EGFR-targeted therapy.

4.
Biomater Adv ; 149: 213402, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058779

RESUMEN

Uncontrolled bleeding and bacterial coinfection are the major causes of death after an injury. Fast hemostatic capacity, good biocompatibility, and bacterial coinfection inhibition pose great challenges to hemostatic agent development. A prospective sepiolite/Ag nanoparticles (sepiolite@AgNPs) composite has been prepared by using natural clay sepiolite as template. A tail vein hemorrhage mouse model and a rabbit hemorrhage model were used to evaluate the hemostatic properties of the composite. The sepiolite@AgNPs composite can quickly absorb fluid to subsequently stop bleeding due to the natural fibrous crystal structure of sepiolite, and inhibit bacterial growth with the antibacterial ability of AgNPs. Compared with commercially-available zeolite material, the as-prepared composite exhibits competitive hemostatic properties without exothermic reaction in the rabbit model of femoral and carotid artery injury. The rapid hemostatic effect was due to the efficient absorption of erythrocyte and activation of the coagulation cascade factors and platelets. Besides, after heat-treatment, the composites can be recycled without significant reduction of hemostatic performance. Our results also prove that sepiolite@AgNPs nanocomposites can stimulate wound healing. The sustainability, lower-cost, higher bioavailability, and stronger hemostatic efficacy of sepiolite@AgNPs composite render these nanocomposites as more favorable hemostatic agents for hemostasis and wound healing.


Asunto(s)
Coinfección , Hemostáticos , Nanopartículas del Metal , Ratones , Animales , Conejos , Nanopartículas del Metal/uso terapéutico , Estudios Prospectivos , Plata/farmacología , Hemostáticos/farmacología , Hemostáticos/química , Cicatrización de Heridas , Hemorragia/tratamiento farmacológico
5.
Bioconjug Chem ; 32(2): 367-375, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33449618

RESUMEN

The synthesis and anticancer cell activity of nitric oxide (NO)-releasing carbon quantum dots (CQDs) are described as potential theranostics. A series of secondary amine-modified CQDs were prepared using a hydrothermal method to modify ß-cyclodextrin with hydroxyl and primary amine terminal functional groups. Subsequent reaction of the CQDs with NO gas under alkaline conditions yielded N-diazeniumdiolate NO donor-modified CQDs with adjustable NO payloads (0.2-1.1 µmol/mg) and release kinetics (half-lives from 29 to 79 min) depending on the level of secondary amines and surface functional groups. The anticancer activity of the NO-releasing CQDs against Pa14c, A549, and SW480 cancer cell lines proved to be dependent on both NO payloads and surface functionalizations. Primary amine-modified CQDs with NO payloads ∼1.11 µmol/mg exhibited the greatest anticancer action. A fluorescence microscopy study demonstrated the utility of these NO-releasing CQDs as dual NO-releasing and bioimaging probes.


Asunto(s)
Carbono/química , Óxido Nítrico/química , Medicina de Precisión , Puntos Cuánticos/química , Aminas/química , Línea Celular Tumoral , Humanos , Análisis Espectral/métodos
6.
ACS Macro Lett ; 10(5): 525-530, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35570756

RESUMEN

In contrast to the conventional hierarchical self-assembly process, effective methods to enable reversible hierarchical self-assembly of block copolymers are comparatively few and limited in scope. Herein, we report, for the first time, a simple yet robust strategy for light-induced reversible hierarchical self-assembly of an amphiphilic diblock copolymer, poly(4-vinylpyridine)-block-poly[6-[4-(4-butyloxyphenylazo)phenoxy]hexyl methacrylate] (denoted P4VP-b-PAzoMA). The hierarchical structures are constructed via a two-step self-assembly process (first-level reverse micelles, second-level compound micelles, and rearrangement into micrometer-sized vesicles) driven by use of solvent. Intriguingly, because of reversible photoinduced trans-to-cis isomerization of azobenzene moieties in PAzoMA, the vesicles could disassemble into subunits upon UV light and then recover the nearly identical vesicular morphology upon visible light. Such a reversible hierarchical self-assembly process is accompanied by reversible fluorescence, encapsulation, and controlled release of dyes and can be used as a template for the synthesis of nanoparticles. Clearly, the ability to render the light-enabled reversible hierarchical self-assembly provides a unique platform for smart delivery vehicles and templates for nanomaterials.


Asunto(s)
Nanopartículas , Nanoestructuras , Micelas , Nanopartículas/química , Nanoestructuras/química , Polímeros/química
7.
Small ; 15(43): e1902485, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31468663

RESUMEN

Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.


Asunto(s)
Biomimética , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Peptoides/farmacología , Fotoquimioterapia , Línea Celular Tumoral , Doxorrubicina/farmacología , Endocitosis/efectos de los fármacos , Humanos , Ligandos , Peptoides/química
8.
Angew Chem Int Ed Engl ; 58(35): 12223-12230, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31211884

RESUMEN

Herein we show that by appending bulky ß-cyclodextrin (CD) groups onto sheet-forming peptoids, we obtain cylindrical micelles that further assembly into membranes and intertwined ribbons on substrates in aqueous solution, depending on the choice of solution and substrate conditions. In situ atomic force microscopy (AFM) shows that micelle assembly occurs in two steps, starting with "precursor" particles that transform into worm-like micelles, which extend and coalesce to form the higher order structures with a rate and a degree of cooperativity dependent on pH and Ca2+ concentration. After co-assembly with hydrophobic 4-(2-hydroxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBD) donors that occupy the hydrophobic core, followed by exposure to hydrophilic Rhodamine B as acceptors that insert into cyclodextrin, the micelles exhibit highly efficient Förster resonance energy transfer efficiency in aqueous solution, thereby mimicking natural light harvesting systems.

9.
Biopolymers ; 110(4): e23258, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30676654

RESUMEN

Due to the branched structure feature and unique properties, a variety of star-shaped polymers have been designed and synthesized. Despite those advances, solid-phase synthesis of star-shaped sequence-defined synthetic polymers that exhibit hierarchical self-assembly remains a significant challenge. Hence, we present an effective strategy for the solid-phase synthesis of three-armed star-shaped peptoids, in which ethylenediamine was used as the centric star pivot. Based on the sequence of monomer addition, a series of AA'A''-type and ABB'-type peptoids were synthesized and characterized by UPLC-MS (ultrahigh performance liquid chromatography-mass spectrometry). By taking advantage of the easy-synthesis and large side-chain diversity, we synthesized star-shaped peptoids with tunable functions. We further demonstrated the aqueous self-assembly of some representative peptoids into biomimetic nanomaterials with well-defined hierarchical structures, such as nanofibers and nanotubes. These results indicate that star-shaped peptoids offer the potential in self-assembly of biomimetic nanomaterials with tunable chemistries and functions.


Asunto(s)
Peptoides/síntesis química , Cromatografía Líquida de Alta Presión , Etilenodiaminas/química , Espectrometría de Masas , Microscopía de Fuerza Atómica , Nanofibras/química , Nanotubos/química , Peptoides/química , Técnicas de Síntesis en Fase Sólida
10.
J Phys Chem Lett ; 10(3): 663-671, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30682888

RESUMEN

In this work, we successfully prepare two-dimensional ultrathin single-crystalline platinum nanodendrites (PtNDs) with precisely controlled generation (size) through a surfactant-directed solution-phase synthesis. The amphiphilic surfactant of C22H45-N+(CH3)2CH2COOH (Br-) acts as the structure-directing template and facet-capping agent simultaneously to kinetically engineer in-the-plane epitaxial growth of Pt nanocrystals along selectively exposed {111} facets into ultrathin PtNDs. A novel formation mechanism defined as crystalline facet-directed step-by-step in-the-plane epitaxial growth, similar to the synthesis of organic dendrimers, is proposed on the basis of the nanostructure and crystalline evolution of PtNDs. The generation growth process is readily extended to precisely engineer the generation of PtNDs (from 0 to 25) and can also be utilized to grow other noble metal NDs (e.g., PdNDs and AuNDs) and core-shell Pt-Pd NDs. Because of the structural advantages, ultrathin PtNDs exhibit enhanced electrocatalytic performance toward hydrogen evolution reaction.

11.
RSC Adv ; 9(68): 40176-40183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32655858

RESUMEN

A simplified diffusion cell methodology was employed to measure the diffusion coefficient of nitric oxide (NO) through phosphate buffered saline (PBS) and artificial sputum medium (ASM)-an in vitro analog for airway mucus. Diffusion through the proteinaceous ASM yielded a significantly lower diffusion coefficient compared to PBS, which is attributed to both the physical obstruction by the mucin mesh and reactive nature of NO radicals towards the biological compounds in ASM. To further confirm that ASM was restricting NO from diffusing freely, a macromolecular propylamine-modified cyclodextrin donor (CD-PA) was employed to release the NO more slowly. The NO diffusion characteristics in ASM via the NO donor were also slower relative to PBS. As NO is likely to interact with lung cells after passing through the mucus barrier, the diffusion of both NO and the CD-PA macromolecular NO donor through differentiated lung tissue was investigated with and without an ASM layer. Comparison of NO diffusion through the three diffusion barriers indicated that the lung tissue significantly impeded NO penetration over the course of the experiment compared to PBS and ASM. In fact, the diffusion of CD-PA through the lung tissue was hindered until after the release of its NO payload, potentially due to the increased net charge of the NO donor structure. Of importance, the viability of the tissue was not influenced by the NO-releasing CD-PA at bactericidal concentrations.

12.
Small ; 14(52): e1803544, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30565848

RESUMEN

The design and synthesis of biocompatible nanomaterials as cargoes for the intracellular delivery of therapeutic proteins or genes have attracted intense attention because of their potential for use in therapeutics. Despite the advances in this area, very few nanomaterials can be efficiently delivered to the cytosol. To address these challenges, crystalline nanoflower-like particles are designed and synthesized from fluorinated sequence-defined peptoids; the crystallinity and fluorination of these particles enable highly efficient cytosolic delivery with minimal cytotoxicity. A cytosol delivery rate of 80% has been achieved for the fluorinated peptoid nanoflowers. Furthermore, these nanocrystals can carry therapeutic genes, such as mRNA and effectively deliver the payload into the cytosol, demonstrating the universal delivery capability of the nanocrystals. The results indicate that self-assembly of crystalline nanomaterials from fluorinated peptoids paves a new way toward development of nanocargoes with efficient cytosolic gene delivery capability.


Asunto(s)
Citosol/metabolismo , Nanoestructuras/química , Peptoides/química , Halogenación , Humanos
13.
J Am Chem Soc ; 140(43): 14178-14184, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30234298

RESUMEN

A series of secondary amine-modified cyclodextrin (CD) derivatives was synthesized with diverse exterior terminal groups (i.e., hydroxyl, methyl, methoxyl, and primary amine). Subsequent reaction with nitric oxide (NO) gas under alkaline conditions yielded N-diazeniumdiolate-modified CD derivatives. Adjustable NO payloads (0.6-2.4 µmol/mg) and release half-lives (0.7-4.2 h) were achieved by regulating both the amount of secondary amine precursors and the functional groups around the NO donors. The bactericidal action of these NO-releasing cyclodextrin derivatives was evaluated against Pseudomonas aeruginosa, a Gram-negative pathogen, with antibacterial activity proving dependent on both the NO payload and exterior modification. Materials containing a high density of NO donors or primary amines exhibited the greatest ability to eradicate P. aeruginosa. Of the materials prepared, only the primary amine-terminated heptasubstituted CD derivatives exhibited toxicity against mammalian L929 mouse fibroblast cells. The NO donor-modified CD was also capable of delivering promethazine, a hydrophobic drug, thus demonstrating potential as a dual-drug-releasing therapeutic.


Asunto(s)
Antibacterianos/farmacología , Ciclodextrinas/farmacología , Fibroblastos/efectos de los fármacos , Óxido Nítrico/química , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclodextrinas/síntesis química , Ciclodextrinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular
14.
Nanotechnology ; 29(40): 405602, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29998852

RESUMEN

TiO2-based nanomaterials are demonstrated to be a promising candidate for next generation lithium ion batteries due to their stable performance and easy preparation. However, their inherent low capacity impedes their wide application compared to commercial carbon nanomaterials. Here we present a unique in situ grafting-graphitization method to achieve a ternary nanocomposite of C/SiO x /TiO2 ultrathin nanobelts with a core-shell heterostructure. The obtained ternary nanocomposite integrates the merits of high specific capacity of SiO x , the excellent mechanical stability of graphite-like carbon and the high reactivity of TiO2. Cyclic voltammetric curves and cycling performance manifest the optimal ternary nanocomposite and deliver a very high initial specific capacity of ∼1196 mA h g-1 with both good rate capability (∼200 mA h g-1 up to 10 C) and especially enhanced cycle stability. Our work demonstrates that building hierarchical core-shell heterostructures is an effective strategy to improve capacity and cycling performance in other composite anodes for electrochemical energy storage materials.

15.
Nanoscale ; 10(26): 12445-12452, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29926884

RESUMEN

Nanostructured materials present new opportunities to achieve sustainable catalytic reactivity. Fabrication and organization of these catalytic particles for enhanced reactivity remain challenging due to limited synthetic and organization strategies. Biomimetic approaches represent new avenues to address such challenges. Here we report the tunable assembly of sequence-defined peptoids as templates to control the formation of highly reactive Pd nanostructures of different arrangements. In this regard, peptoid 2D membranes and 1D fibers were assembled and used to template Pd nanoparticles in specific orientations. Catalytic analysis of the resulting materials demonstrated enhanced reactivity from the fiber-based system due to changes in inorganic material display. These results suggest that the morphology of peptoid-based templates plays an important role in controlling material properties, which could open a new direction of using peptoid assemblies for applications in optics, plasmonics, sensing, etc.


Asunto(s)
Materiales Biomiméticos , Nanopartículas/química , Peptoides/química , Catálisis
16.
Nat Commun ; 9(1): 270, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348551

RESUMEN

Despite recent advances in the assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly designable and dynamic nanotubes assembled from sequence-defined peptoids through a unique "rolling-up and closure of nanosheet" mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers crystallize to form well-defined nanosheets before folding to form single-walled nanotubes. These nanotubes undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of peptoids, we demonstrate tuning of nanotube wall thickness, diameter, and mechanical properties. Atomic force microscopy-based mechanical measurements show peptoid nanotubes are highly stiff (Young's Modulus ~13-17 GPa). We further demonstrate the precise incorporation of functional groups within nanotubes and their applications in water decontamination and cellular adhesion and uptake. These nanotubes provide a robust platform for developing biomimetic materials tailored to specific applications.


Asunto(s)
Nanotubos/química , Peptoides/química , Pliegue de Proteína , Multimerización de Proteína , Células A549 , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Transmisión , Nanotubos/ultraestructura , Peptidomiméticos/química , Agua/química
17.
RSC Adv ; 8(24): 13408-13416, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542546

RESUMEN

Natural assembly method was utilized to prepare a novel ternary Ag-SnS-TiO2 nanocomposite, in which TiO2 nanobelts were used as templates. The co-loading of Ag and SnS nanoparticles endows TiO2 nanobelts with enhanced photocatalytic capability, resulting from the broadened light absorption spectra and decreased band gaps. Comparing with raw TiO2 nanobelts and commercial Degussa P25, an improvement in photodegradation of simulated organic pollutants was successfully demonstrated due to the decreasing recombination of photogenerated electron-hole pairs. Our work presents a new strategy for the preparation of ternary TiO2-based photocatalysts in the practical application of wastewater treatment.

18.
Nat Commun ; 7: 12252, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27402325

RESUMEN

An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications.


Asunto(s)
Membrana Celular/química , Nanoestructuras/química , Peptoides/química , Materiales Biomiméticos , Cristalización , Lípidos , Simulación de Dinámica Molecular
19.
Chem Commun (Camb) ; 51(33): 7234-7, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25813408

RESUMEN

This work reports the self-assembly of anion-exchangeable vesicles from an amphiphilic hyperbranched polymeric ionic liquid (HBPIL). By a simple one-step anion exchange with methyl orange, the obtained HBPILs could self-assemble into pH-indicative and colorful vesicles in water with color changes directly visible to the naked eye in response to solution pH. In addition, by another step of anion exchange with bovine serum albumin (BSA), the BSA-coated vesicles could also be readily prepared.

20.
Chem Asian J ; 9(8): 2281-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850132

RESUMEN

Hyperbranched multiarm copolymers (HMCs) have been shown to hold great potential as precursors in self-assembly, and many impressive supramolecular structures have been prepared through the self-assembly of HMCs in solution. However, theoretical studies on the corresponding self-assembly mechanism have been greatly lagging behind. Herein, we report the self-assembly of normal or reverse vesicles from amphiphilic HMCs by dissipative particle dynamics (DPD) simulation. The simulation disclosed both the self-assembly mechanisms and dynamics of vesicles. It indicates that the self-assembly of HMCs involves several steps, from randomly distributed unimolecular micelles to small spherical micelles, to membrane-like micelles, to finally small vesicles. The membranes are formed through the direct aggregation and lateral fusion of small micelles, and the bending and closing of the membranes give rise to small vesicles. Finally, large and steady vesicles are formed through the fusion of small vesicles. In addition, the bilayer or monolayer molecular packing modes as well as the mircrophase separation behaviors of HMCs in normal or reverse vesicles have also been studied. These simulation results explore details that cannot be observed in the experiments to a certain degree, and have extended the understanding of the vesicular self-assembly process of HMCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA