Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(26): 17103-17110, 2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28636032

RESUMEN

Deep eutectic solvents (DESs) offer a suitable alternative to conventional solvents in terms of both performance and cost-effectiveness. Some DESs also offer certain green features, the greenness of which is notoriously enhanced when combined with water. Aqueous DES dilutions are therefore attracting great attention as a novel green medium for biotechnological processes, with the aqueous dilutions of reline - a DES composed of urea and choline chloride - being one of the most studied systems. Despite their macroscopic homogeneous appearance, both 1H NMR spectroscopic studies and molecular dynamics simulations have revealed the occurrence of certain dynamic heterogeneity at a microscopic molecular level. Ultrasonic measurements were also used with the aim of getting further insights but nonconclusive results were obtained. Herein, we have studied aqueous reline dilutions by Brillouin spectroscopy given its proved suitability for detecting local structure rearrangements in liquid mixtures of H-bonded co-solvents. Brillouin spectroscopy revealed the formation of a co-continuous structure resulting from local structure rearrangements and micro-segregation into aqueous and DES phases. Interestingly, there is agreement between 1H NMR and Brillouin spectroscopy when pointing to the DES content where microphase segregation and formation of co-continuous structures occurred.

2.
J Phys Condens Matter ; 22(19): 195102, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21386446

RESUMEN

We have conducted x-ray diffraction, calorimetric and Brillouin-scattering experiments on n-butanol between 77 and 300 K, aiming to explore the physical nature of the so-called 'glacial state' previously found in n-butanol as well as in triphenyl phosphite. In addition to our structural and thermodynamic studies of the liquid-glass transition and of the stable crystal state in n-butanol, we have found that the metastable 'glacial state' that can be obtained in the temperature range 125-160 K is not a second amorphous state, but rather the result of a frustrated or aborted crystallization process that produces plenty of nanocrystallites embedded in a disordered matrix. The crystalline order of these nanocrystallites of the 'glacial phase' is exactly the same as that well observed in the fully ordered stable crystal into which it transforms by heating above 160 K.


Asunto(s)
1-Butanol/química , Conformación Molecular , Transición de Fase , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA