Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 176171, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260497

RESUMEN

Carbon dioxide (CO2) serves as a crucial greenhouse gas that traps heat and regulates the Earth's temperature. High spatiotemporal resolution CO2 estimation can provide valuable data to understand the characteristics of fine-scale climate change trends and to formulate more effective emission reduction strategies. This study presents a spatiotemporal ResNet model (ST-ResNet) specifically developed to estimate the highest resolution (1 km × 1 km) daily column-averaged dry-air mole fraction of CO2 (XCO2) in China from 2015 to 2020. The ST-ResNet model excels in estimating XCO2 by comprehensively considering the complex relationships between XCO2 and its various influencing factors, while efficiently capturing both temporal and spatial correlations, thereby demonstrating remarkable generalization capability. The results show that the ST-ResNet generates a highly accurate XCO2 dataset, outperforming the traditional ResNet. Ground-based validation results further confirm the high accuracy and spatiotemporal resolution of our estimated data product. Using this dataset, the spatial and temporal characteristics of XCO2 across the entire China and several urban agglomerations have been analyzed. The high spatiotemporal resolution estimated XCO2 dataset for China is made publicly available at [https://doi.org/10.6084/m9.figshare.25272868], offering substantial potential for fine-scale carbon research.

2.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000872

RESUMEN

Roads play a crucial role in urban transportation by facilitating the movement of materials within a city. The condition of road surfaces, such as damage and road facilities, directly affects traffic flow and influences decisions related to urban transportation maintenance and planning. To gather this information, we propose the Detecting and Clustering Framework for sensing road surface conditions based on crowd-sourced trajectories, utilizing various sensors (GPS, orientation sensors, and accelerometers) found in smartphones. Initially, smartphones are placed randomly during users' travels on the road to record the road surface conditions. Then, spatial transformations are applied to the accelerometer data based on attitude readings, and heading angles are computed to store movement information. Next, the feature encoding process operates on spatially adjusted accelerations using the wavelet scattering transformation. The resulting encoding results are then input into the designed LSTM neural network to extract bump features of the road surface (BFRSs). Finally, the BFRSs are represented and integrated using the proposed two-stage clustering method, considering distances and directions. Additionally, this procedure is also applied to crowd-sourced trajectories, and the road surface condition is computed and visualized on a map. Moreover, this method can provide valuable insights for urban road maintenance and planning, with significant practical applications.

3.
Sci Rep ; 11(1): 17956, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504211

RESUMEN

ERA5 is the latest fifth-generation reanalysis global atmosphere dataset from the European Centre for Medium-Range Weather Forecasts, replacing ERA-Interim as the next generation of representative satellite-observational data on the global scale. ERA5 data have been evaluated and applied in different regions, but the performances are inconsistent. Meanwhile, there are few precise evaluations of ERA5 precipitation data over long time series have been performed in Chinese mainland. This study evaluates the temporal-spatial performance of ERA5 precipitation data from 1979 to 2018 based on gridded-ground meteorological station observational data across China. The results showed that ERA5 data could capture the annual and seasonal patterns of observed precipitation in China well, with correlation coefficient values ranging from 0.796 to 0.945, but ERA5 slightly overestimated precipitation in the summer. Nonetheless, the results also showed that the accuracy of the precipitation products was strongly correlated with topographic distribution and climatic divisions. The performance of ERA5 shows spatial inherently across China that the highest correlation coefficient values locate in eastern, Northwestern and North China and the lowest biases locate in Southeast China. This study provides a reliable data assessment of the ERA5 data and precipitation trend analyses in China. The results provide accuracy references for the further use of precipitation satellite data for hydrological calculations and climate numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA