RESUMEN
We investigated the effect of heat stress (HS) on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG) axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR) was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C) for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.
Asunto(s)
Animales , Pollos/anomalías , Trastornos de Estrés por Calor/veterinaria , ARN Mensajero/análisis , ARN Mensajero/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinariaRESUMEN
We investigated the effect of heat stress (HS) on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG) axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR) was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C) for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.(AU)
Asunto(s)
Animales , Trastornos de Estrés por Calor/veterinaria , Pollos/anomalías , ARN Mensajero/análisis , ARN Mensajero/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/veterinariaRESUMEN
BACKGROUND: Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes and candidate copy number driving genes in esophageal squamous cell carcinoma (ESCC). METHODS: We used array comparative genomic hybridization to identify recurrent genomic alterations and screened the candidate targets of selected amplification regions by quantitative and semi-quantitative RT-PCR. RESULTS: Thirty-four gains and 16 losses occurred in more than 50 % of ESCCs. High-level amplifications at 7p11.2, 8p12, 8q24.21, 11q13.2-q13.3, 12p11.21, 12q12 and homozygous deletions at 2q22.1, 8p23.1-p21.2, 9p21.3 and 14q11.2 were also identified. 11q13.2 was a frequent amplification region, in which five genes including CHKA, GAL, KIAA1394, LRP5 and PTPRCAP were overexpressed in tumor tissues than paracancerous normal tissues. The expression of ALG3 at 3q27.1 was higher in ESCCs, especially in patients with lymph node metastasis. CONCLUSIONS: Target gene identification of amplifications or homozygous deletions will help to reveal the mechanism of tumor formation and explore new therapy method.