Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1121310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950329

RESUMEN

This article purposed to discuss the connection between microbiota and characteristic flavor of different fish sauces (Natural fermentation (WQ), koji outdoor fermentation (YQ), heat preservation with enzyme (BWE), and heat preservation with koji (BWQ)) at the early (3 months) and late stage (7 months). A total of 117 flavor compounds were determined according to SPME-GC-MS analysis. O2PLS-DA and VIP values were used to reveal 15 and 28 flavor markers of different fish sauces at 3 and 7 M of fermentation. Further, the possible flavor formation pathways were analyzed using metagenomic sequencing, and the key microbes associated with flavor formation were identified at the genetic level. The top 10 genera related to flavor generation, such as Lactobacillus, Staphylococcus, Enterobacter, etc., appeared to play a prominent part in the flavor formation of fish sauce. The difference was that only BWQ and BWE groups could produce ethyl-alcohol through amino acid metabolism, while YQ, BWE and BWQ groups could generate phenylacetaldehyde through the transformation of Phe by α-ketoacid decarboxylase and aromatic amino acid transferase. Our research contributes to clarifying the various metabolic roles of microorganisms in the flavor generation of fish sauce.

2.
Crit Rev Food Sci Nutr ; 63(25): 7564-7583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35253552

RESUMEN

Fish sauce is a special flavored condiment formed by traditional fermentation of low-value fish in coastal areas, which are consumed and produced in many parts of the world, especially in Southeast Asia. In the process of fish sauce fermentation, the diversity of microbial flora and the complex metabolic reactions of microorganisms, especially lipid oxidation, carbohydrate fermentation and protein degradation, are accompanied by the formation of flavor substances. However, the precise reaction of microorganisms during the fersmentation process is difficult to accurately control in modern industrial production, which leads to the loss of traditional characteristic flavors in fermented fish sauces. This paper reviews the manufacturing processes, core microorganisms, metabolic characteristics and flavor formation mechanisms of fermented fish sauces at home and abroad. Various methods have been utilized to analyze and characterize the composition and function of microorganisms. Additionally, the potential safety issues of fermented fish sauces and their health benefits are also reviewed. Furthermore, some future directions and prospects of fermented fish sauces are also reviewed in this paper. By comprehensive understanding of this review, it is expected to address the challenges in the modern production of fish sauce thereby expanding its application in food or diet.


Asunto(s)
Alimentos , Alimentos de Soja , Animales , Fermentación , Dieta
3.
J Agric Food Chem ; 70(38): 11844-11859, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112349

RESUMEN

Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.


Asunto(s)
Alimentos Funcionales , Polifenoles , Álcalis , Aminoácidos , Animales , Cápsulas , Geles , Humanos , Proteínas , Solventes , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA