Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39127314

RESUMEN

Mitochondrial function can be regulated by ion channels. Mitochondrial RNA splicing 2 (Mrs2) is a magnesium ion (Mg2+) channel located in the inner mitochondrial membrane, thereby mediating the Mg2+ influx into the mitochondrial matrix. However, its potential role in regulating the Mg homeostasis and mitochondrial function in aquatic species is still unclear. This study molecularly characterizes the gene encoding Mrs2 in fish M. amblycephala with its functions in maintaining the Mg homeostasis and mitochondrial function verified. The mrs2 gene is 2133 bp long incorporating a 1269 bp open reading frame, which encodes 422 amino acids. The Mrs2 protein includes two transmembrane domains and a conserved tripeptide Gly-Met-Asn, and has a high homology (65.92-97.64%) with those of most vertebrates. The transcript of mrs2 was relatively high in the white muscle, liver and kidney. The inhibition of mrs2 reduces the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the activities of mitochondrial complex I and V in hepatocytes. However, the over-expression of mrs2 increases the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the complex V activity, but decreases the activities of mitochondrial complex III and IV and citrate synthase in hepatocytes. Collectively, Mrs2 is highly conserved among different species, and is prerequisite for maintaining Mg homeostasis and mitochondrial function in fish.


Asunto(s)
Secuencia de Aminoácidos , Clonación Molecular , Homeostasis , Magnesio , Mitocondrias , Animales , Magnesio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Filogenia , Secuencia de Bases , Empalme del ARN
2.
Food Chem ; 460(Pt 1): 140518, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047487

RESUMEN

Docosahexaenoic acid (DHA) is a potential regulatory substance for flesh quality of fish, while the related evaluation is still barely. In this study, the effects of DHA-enriched diets on the flesh quality of freshwater fish (Megalobrama amblycephala) were investigated systematically. The sub-adult M. amblycephala were randomly fed with control diet (CON), 0.2% DHA diet (DL) or 0.8% DHA diet (DH). After 12-week feeding trial, the DH group flesh had higher concentrations of essential amino acids and polyunsaturated fatty acids compared to the CON group. Meanwhile, the hardness, springiness, shear force and moisture-holding capacity, as well as the values of umami, richness and sweetness were also improved by DH. The non-targeted metabolomics analysis revealed the key metabolites that may have significantly positive influence on flavor. Collectively, the diet supplementation with 0.8% DHA could achieve the improvement of the flesh quality in terms of nutritional value, texture and flavor in freshwater fish.


Asunto(s)
Alimentación Animal , Cyprinidae , Ácidos Docosahexaenoicos , Valor Nutritivo , Gusto , Animales , Ácidos Docosahexaenoicos/análisis , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Cyprinidae/metabolismo , Alimentación Animal/análisis , Alimentos Marinos/análisis , Suplementos Dietéticos/análisis , Agua Dulce/química , Aromatizantes/química , Aromatizantes/metabolismo
3.
Fish Physiol Biochem ; 50(4): 1667-1682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963582

RESUMEN

The present study, as one part of a larger project that aimed to investigate the effects of dietary berberine (BBR) on fish growth and glucose regulation, mainly focused on whether miRNAs involve in BBR's modulation of glucose metabolism in fish. Blunt snout bream Megalobrama amblycephala (average weight of 20.36 ± 1.44 g) were exposed to the control diet (NCD, 30% carbohydrate), the high-carbohydrate diet (HCD, 43% carbohydrate) and the berberine diet (HCB, HCD supplemented with 50 mg/kg BBR). After 10 weeks' feeding trial, intraperitoneal injection of glucose was conducted, and then, the plasma and liver were sampled at 0 h, 1 h, 2 h, 6 h, and 12 h. The results showed the plasma glucose levels in all groups rose sharply and peaked at 1 h after glucose injection. Unlike the NCD and HCB groups, the plasma glucose in the HCD group did not decrease after 1 h, while remained high level until at 2 h. The NCD group significantly increased liver glycogen content at times 0-2 h compared to the other two groups and then liver glycogen decreased sharply until at times 6-12 h. To investigate the role of BBR that may cause the changes in plasma glucose and liver glycogen, miRNA high-throughput sequencing was performed on three groups of liver tissues at 2 h time point. Eventually, 20 and 12 differentially expressed miRNAs (DEMs) were obtained in HCD vs NCD and HCB vs HCD, respectively. Through function analyzing, we found that HCD may affect liver metabolism under glucose loading through the NF-κB pathway; and miRNAs regulated by BBR mainly play roles in adipocyte lipolysis, niacin and nicotinamide metabolism, and amino acid transmembrane transport. In the functional exploration of newly discovered novel:Chr12_18892, we found its target gene, adenylate cyclase 3 (adcy3), was widely involved in lipid decomposition, amino acid metabolism, and other pathways. Furthermore, a targeting relationship of novel:Chr12_18892 and adcy3 was confirmed by double luciferase assay. Thus, BBR may promote novel:Chr12_18892 to regulate the expression of adcy3 and participate in glucose metabolism.


Asunto(s)
Berberina , Cyprinidae , Glucosa , Hígado , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Berberina/farmacología , Cyprinidae/genética , Cyprinidae/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Glucemia , Dieta/veterinaria , Alimentación Animal/análisis
4.
Aquac Nutr ; 2024: 3147505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374819

RESUMEN

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

5.
Redox Biol ; 71: 103096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387137

RESUMEN

Oxidative stress in muscles is closely related to the occurrence of insulin resistance, muscle weakness and atrophy, age-related sarcopenia, and cancer. Aldehydes, a primary oxidation intermediate of polyunsaturated fatty acids, have been proven to be an important trigger for oxidative stress. However, the potential role of linoleic acid (LA) as a donor for volatile aldehydes to trigger oxidative stress has not been reported. Here, we reported that excessive dietary LA caused muscle redox imbalance and volatile aldehydes containing hexanal, 2-hexenal, and nonanal were the main metabolites leading to oxidative stress. Importantly, we identified 5-lipoxygenase (5-LOX) as a key enzyme mediating LA peroxidation in crustaceans for the first time. The inhibition of 5-LOX significantly suppressed the content of aldehydes produced by excessive LA. Mechanistically, the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway facilitated the translocation of 5-LOX from the nucleus to the cytoplasm, where 5-LOX oxidized LA, leading to oxidative stress through the generation of aldehydes. This study suggests that 5-LOX is a potential target to prevent the production of harmful aldehydes.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Ácido Linoleico , Ácido Linoleico/farmacología , Araquidonato 5-Lipooxigenasa/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Músculos/metabolismo , Aldehídos/metabolismo
6.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 480-492, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014877

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cyprinidae , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación del Apetito , Carbohidratos , Cyprinidae/metabolismo , Dieta/veterinaria , Dieta Alta en Grasa , Hipotálamo/metabolismo , Lípidos , Mamíferos/metabolismo
7.
Fish Physiol Biochem ; 50(1): 183-196, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37291452

RESUMEN

Hypoxia is the most significant factor that threatens the health and even survival of freshwater and marine fish. Priority should be given to the investigation of hypoxia adaptation mechanisms and their subsequent modulation. Acute and chronic studies were designed for the current study. Acute hypoxia comprised of normoxia dissolved oxygen (DO) 7.0 ± 0.5 mg/mL (N0), low-oxygen 5.0 ± 0.5 mg/mL(L0), and hypoxia 1.0 ± 0.1 mg/mL (H0) and 300 mg/L Vc for hypoxia regulation (N300, L300, H300). Chronic hypoxia comprised of normoxia (DO 7.0 ± 0.5 mg/mL) with 50 mg/kg Vc in the diet (N50) and low oxygen (5.0 ± 0.5 mg/mL) with 50, 250, 500 mg/kg Vc in the diet (L50, L250, L500) to assess the effect of Vc in hypoxia. The growth, behavior, hematological parameters, metabolism, antioxidants, and related inflammatory factors of channel catfish were investigated, and it was found that channel catfish have a variety of adaptive mechanisms in response to acute and chronic hypoxia. Under acute 5 mg/mL DO, the body color lightened (P < 0.05) and reverted to normal with 300 mg/mL Vc. PLT was significantly elevated after 300 mg/L Vc (P < 0.05), indicating that Vc can effectively restore hemostasis following oxygen-induced tissue damage. Under acute hypoxia, the significantly increased of cortisol, blood glucose, the gene of pyruvate kinase (pk), and phosphofructokinase (pfk), together with the decreased expression of fructose1,6-bisphosphatase (fbp) and the reduction in myoglycogen, suggested that Vc might enhance the glycolytic ability of the channel catfish. And the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and the gene expression of sod rose significantly, showing that Vc might improve the antioxidant capacity of the channel catfish. The significant up-regulation of tumor necrosis factor-alpha (tnf-α), interleukin-1ß (il-1ß), and cd68 under acute hypoxia implies that hypoxia may generate inflammation in channel catfish, whereas the addition of Vc and down-regulation of these genes suggests that Vc suppresses inflammation under acute hypoxia. We found that the final weight, WGR, FCR, and FI of channel catfish were significantly reduced under chronic hypoxia, and that feeding 250 mg/kg of Vc in the diet was effective in alleviating the growth retardation caused by hypoxia. The significant increase in cortisol, blood glucose, myoglycogen, and the expression of tnf-α, il-1ß, and cd68 (P < 0.05) and the significant decrease in lactate (P < 0.05) under chronic hypoxia indicated that the channel catfish had gradually adapted to the survival threat posed by hypoxia and no longer relied on carbohydrates as their primary source of energy. While the addition of Vc did not appear to increase the energy supply of the fish under hypoxia in terms of glucose metabolism, but the significantly decreased expression of tnf-α, il-1ß, and cd68 (P < 0.05) also were found, indicating that chronic hypoxia, similar acute hypoxia, may increase inflammation in the channel catfish. This study indicates that under acute stress, channel catfish withstand stress by raising energy supply through glycolysis, and acute hypoxic stress significantly promotes inflammation in channel catfish, but Vc assists the channel catfish resist stress by raising glycolysis, antioxidant capacity, and decreasing the production of inflammatory markers. Under chronic hypoxia, the channel catfish no longer utilize carbohydrates as their primary energy source, and Vc may still effectively reduce inflammation in the channel catfish under hypoxia.


Asunto(s)
Antioxidantes , Ictaluridae , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ictaluridae/fisiología , Hidrocortisona/metabolismo , Glucemia , Factor de Necrosis Tumoral alfa/metabolismo , Vitaminas , Hipoxia , Inflamación , Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
8.
Anim Nutr ; 14: 1-19, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37808949

RESUMEN

Normally, proper fermentation can be an efficient and widely used method to improve feed quality in animal rearing; however, the studies on crustaceans, especially Eriocheir sinensis, remain limited. This study aimed to investigate whether feed fermentation could meliorate dietary nutritional value and benefit E. sinensis rearing. First, non-fermented feed (NFD) and fermented feed (FD) were produced and assessed, respectively. Then, the "Y" maze feed choice behavior test (180 times; 30 times, 6 rounds) was conducted to assess the attractiveness of these 2 feeds for crabs. Finally, a total of 80 crabs (44.10 ± 0.80 g) were randomly assigned into 2 groups with 4 replicates, and fed the experimental diets for 8 weeks to evaluate the effects of each feed on growth, antioxidant capacity, meat flavor, and intestinal microbiota. In this study, FD showed higher levels of crude protein (P < 0.01), soluble protein (P < 0.01), amino acids (P < 0.05), lactic acid (P < 0.001), and lower levels of crude fiber (P < 0.05) and antinutritional factors (agglutinin, trypsin inhibitor, glycinin, and ß-conglycinin) (P < 0.001) than NFD. Additionally, FD was more attractive to crabs than NFD (P < 0.01) and it stimulated the appetite of crabs more than NFD (P < 0.05). The growth performance, feed efficiency, and digestive enzyme activity of FD-fed crabs were significantly higher than those of NFD-fed crabs (P < 0.05). The electronic sensory measurements and free amino acid profiles revealed that the FD diet had positive impacts on the meat flavor of crabs, particularly in "sweet" and "umami" tastes. Moreover, the antioxidant capacity of FD-fed crabs was significantly higher than that of NFD-fed crabs (P < 0.05). Fermented feed also affected the diversity and composition of intestinal microflora. The functional prediction of microbial communities showed that crabs fed FD had a better microecological environment in the intestine. In conclusion, the fermentation of aquafeed could be an effective approach to enhance feed quality and therefore benefit E. sinensis rearing.

9.
Fish Physiol Biochem ; 49(6): 1079-1095, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831370

RESUMEN

The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.


Asunto(s)
Cyprinidae , Cipriniformes , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa , Ocludina/metabolismo , Ocludina/farmacología , Cyprinidae/metabolismo , Inflamación , Antioxidantes/metabolismo , Cipriniformes/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico , Caspasas/metabolismo , Caspasas/farmacología
10.
Fish Shellfish Immunol ; 141: 108996, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579810

RESUMEN

This investigation looks at the impact of oral bovine serum albumin (BSA) on antioxidants, immune responses, and inflammation signals in blunt snout bream fed a high-calorie diet. 480 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet, a high-fat diet (HFD), a high carbohydrate diet (HCD), and a high-energy diet (HED) in six replicates for 12 weeks. After the feeding trial, fish were orally administered with 10% BSA for 10 h, then blood and liver samples from five fish were randomly obtained after 10 h to determine plasma inflammatory markers and inorganic components. Also, the leftover fish were injected with thioacetamide, blood and liver samples were simultaneously obtained at 12, 48, and 96 h, respectively, to determine antioxidant, immune, and inflammatory signals, with survival rates recorded at the same time interval. After 10 h, plasma inflammatory markers such as tumour necrosis factors (TNF-α), interleukin 6 (IL6), nitric oxide (NO), Monocyte chemoattractant protein-1(MCP-1), and cortisol were significantly improved in fish fed HCD and HED as compared to the control. After thioacetamide stress, plasma lysozyme (LYM), complement 3, myeloperoxidase (MPO), and alkaline phosphatase activities, as well as immunoglobulin M, levels all increased significantly (P < 0.05) with increasing time with maximum value attained at 96 h, but shows no difference among dietary treatment. Similar results were observed in liver superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and malondialdehyde (MDA) content, but tended to reduce at 96 h. nf-kb, tnf-α, and mcp-1 tend to decrease with the minimum value attained at 48 h and gradually decrease with increasing time at 96 h. After 96 h of the thioacetamide (TAA) challenge, the survival rate of blunt snout bream fed with an HFD and HCD was significantly lower (P < 0.05) at 48, and 96 h before the administration of BSA. However, no differences were observed among dietary treatments after the BSA administration. Overall, this study indicated that oral dietary administration of BSA might greatly enhance the antioxidant capability and innate immunity and mitigates inflammation signals after TAA stress in blunt snout bream fed high energy diet.


Asunto(s)
Cipriniformes , Albúmina Sérica Bovina , Animales , Alimentación Animal/análisis , Antioxidantes , Dieta , Dieta Alta en Grasa , Inmunidad Innata , Inflamación/inducido químicamente , Inflamación/veterinaria , Tioacetamida , Factor de Necrosis Tumoral alfa
11.
Ecotoxicol Environ Saf ; 249: 114397, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527851

RESUMEN

Long-term feed route exposure to T-2 toxin was proved to elicit growth retarding effects and induction of oxidative stress and apoptosis in Chinese mitten crab (Eriocheir sinensis). However, no study with a holistic perspective has been conducted to date to further describe the in-depth toxicological mechanism of T-2 toxin in E.sinensis. In this study, an RNA-Sequencing (RNA-seq) was used in this study to investigate the effects of feed supplementation with 0 mg/kg and 4 mg/kg T-2 toxin on the hepatopancreas transcriptome of E.sinensis and establish a hepatopancreas transcriptome library of T-2 toxin chronically exposed crabs after five weeks, where 14 differentially expressed genes (DEGs) were screened out across antioxidant, apoptosis, autophagy, glucolipid metabolism and protein synthesis. The actual expression of all the DEGs (Caspase, ATG4, PERK, ACSL, CAT, BIRC2, HADHA, HADHB, ACOX, PFK, eEFe1, eIF4ɑ, RPL13Ae) was also analyzed by real-time quantitative PCR (RT-qPCR). It was demonstrated that long-term intake of large amounts of T-2 toxin could impair antioxidant enzyme activity, promote apoptosis and protective autophagy, disrupt lipid metabolism and inhibit protein synthesis in the hepatopancreas of E.sinensis. In conclusion, this study explored the toxicity mechanism of T-2 toxin on the hepatopancreas of E.sinensis at the mRNA level, which lays the foundation for further investigation of the molecular toxicity mechanism of T-2 toxin in aquatic crustaceans.


Asunto(s)
Braquiuros , Toxina T-2 , Animales , Transcriptoma , Toxina T-2/toxicidad , Antioxidantes/metabolismo , Hepatopáncreas/metabolismo , Apoptosis , Braquiuros/genética
12.
Antioxidants (Basel) ; 11(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36552577

RESUMEN

Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.

13.
Fish Physiol Biochem ; 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525145

RESUMEN

The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.

14.
Fish Physiol Biochem ; 48(4): 1025-1038, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35802285

RESUMEN

Nowadays, both pelleted feed (PF) and extruded feed (EF) have been widely adopted in the aquaculture industry. However, limited information is available comparing their utilization efficiencies and meanwhile interpreting the underlying mechanisms. This study aimed to compare the utilization efficiencies of both PF and EF by blunt snout bream (Megalobrama amblycephala) based on growth performance, digestive capacities, and endocrine functions. Two feeds with identical formulas were prepared and named PF and EF. Fish were randomly distributed into two groups, including one that fed the PF continuously, and one that offered the EF continuously. The whole feeding trail lasted 8 weeks. The results showed that the protein efficiency (PER), retention of nitrogen and energy (NRE and ERE), viscera index (VSI), apparent digestibility of dry matter, protein, carbohydrate, and gross energy, whole-body crude protein and energy contents, intestinal enzymatic activities of protease, amylase, and Na+,K+-ATPase, intestinal villi length, crypt depth, muscular layer thickness, and the transcriptions of leptin (LEP) and cholecystokinin (CCK) of the EF group were all significantly higher than those of the PF group, while the opposite was true for feed intake and feed conversion ratio. These findings suggested that compared with PF, EF could improve the feed utilization and nutrient retention of blunt snout bream by enhancing the intestinal digestive and absorptive functions but reduce the feed intake through the stimulation of both LEP and CCK.


Asunto(s)
Cyprinidae , Cipriniformes , Alimentación Animal/análisis , Animales , Colecistoquinina , Cyprinidae/fisiología , Dieta/veterinaria , Digestión/fisiología , Nutrientes
15.
Front Nutr ; 9: 853409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464002

RESUMEN

With the popularity of western food characterized by excessive fat and sugars, obesity has currently been a public health issue. Low-grade chronic inflammation accompanied by obesity increases the risk of multiple epidemics such as diabetes, cancer and cardiovascular diseases. Here, we show that feeding Megalobrama amblycephala with a high-fat diet (HFD) drives obesity-related chronic inflammation and the penetration of lipopolysaccharide (LPS). Interference with antibiotics inhibits the produce of LPS and this alleviates the sustained release of pro-inflammatory factors induced by HFD. LPS penetration is attributed to weakened intestinal mucus barrier after high-fat exposure. Mechanically, the consumption of HFD inhibits the secretion of mucin 2 (MUC2) due to the induction of endoplasmic reticulum stress mediated by the inositol-requiring enzyme 1 (IRE1) /X box-binding protein 1 (XBP1) pathway in goblet cells. Furthermore, excessive lipid exacerbates the leakage of LPS across the intestinal epithelial cell barrier via the transcellular pathway. Mechanically, lipid increases the internalization of LPS in intestinal epithelial cells depending on the activation of fatty acid translocase (FAT/CD36). These results demonstrate that HFD causes the penetration of LPS due to the weakened intestinal mucosal barrier and the assistance of CD36.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34597777

RESUMEN

To investigate the effects of dietary icariin (ICA) supplementation on acute oxidative stress and hepatopancreatic injury induced by lipopolysaccharide (LPS) injection in Eriocheir sinensis, an 8-week feeding trial of crabs was conducted using 4 diets with different supplementation levels of ICA (0, 50, 100, and 200 mg/kg diet weight, respectively), and then challenged with LPS of 400 µg/kg body weight for 6 h. Results showed that 100 mg/kg ICA supplementation increased the antioxidant capacity, reduced the stress-related indicators in haemolymph, strengthen the mitochondrial membrane potential, and reduce apoptosis compared to the single LPS-treated crabs. The expressions of apoptosis-related genes and proteins were also evaluated to further understand the effects of dietary ICA pretreatment on LPS-induced cell apoptosis. As a result, dietary 100 mg/kg diet weight ICA pre-addition significantly down-regulated the expression of HSP60, HSP70, Caspase 3c, Caspase 8, Caspase 3, Caspase 9, P38, and Bax (P < 0.05), and alleviated the suppressed expression of PI3K, AKT, MEK, and Bcl-2 (P < 0.05) in crabs challenged with LPS. Overall, this research reveals that ICA supplementation of 100 mg/kg diet weight could enhance the resistance to oxidative damage and apoptosis in E. sinensis facing LPS challenge.


Asunto(s)
Crustáceos/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Hepatopáncreas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Hepatopáncreas/patología
17.
Aquac Nutr ; 2022: 7285851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860449

RESUMEN

This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.

18.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 403-418, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34957599

RESUMEN

This study investigated the effects of xylooligosaccharide (XOS) supplementation on growth, intestinal enzyme, antioxidant and immune-related genes in common carp Cyprinus carpio fed a high-fat diet (HFD). One hundred and ninety two fish with an initial weight of 19.61 ± 0.96 g were allocated into 24 tanks (eight fish per tank in four replicate) and were fed the control diet, HFD, HFD with 0.5%, 1%, 2% and 3% XOS supplementation. From the result, fish offered HFD with 1% XOS supplementation significantly obtained a higher body mass index and feed efficiency ratio, whereas condition factor was higher in fish fed HFD supplemented with 2% XOS but no difference was attributed to other supplemented group compared to control group. Also, fish fed HFD supplemented with 1%-2% XOS significantly improved protease, lipase, creatine kinase and sodium/potassium ATPase activities compared to other groups. Fish offered HFD were significantly lower in superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), myeloperoxidase, acid phosphatase, lysozyme activities and immunoglobulin content, but the opposite result was found for aspartate transaminase, alanine transaminase activities, malondialdehyde, protein carbonyl and cortisol content as compared with the control. However, this effect was reversed with HFD supplemented with XOS. Also, interleukin 1ß, interleukin 8, tumour necrosis factors, interferons, caspase-3 and caspase-9 in the intestine were all up-regulated in the HFD group, while the reverse pattern was found in SOD, GPX, lysozyme-C, complement 3 and mucin 5b (muc5b), than the control group. These effects were all enhanced by feeding the XOS diet, especially those fed 1%-3% supplementation. In conclusion, XOS inclusion can improve the growth, digestive enzymes, antioxidants and immune response of common carp fed HFD.


Asunto(s)
Carpas , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinaria , Dieta Alta en Grasa , Suplementos Dietéticos , Glucuronatos , Intestinos , Oligosacáridos , Prebióticos
19.
Genes Chromosomes Cancer ; 60(11): 743-761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296799

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.


Asunto(s)
Carcinogénesis , Neurofibrosarcoma , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Neurofibrosarcoma/genética , Neurofibrosarcoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
20.
Fish Physiol Biochem ; 47(2): 499-513, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33501601

RESUMEN

Blunt snout bream (Megalobrama amblycephala) were randomly assigned into three diets: normal-carbohydrate diet (NCD, 30% carbohydrate, w/w), high-carbohydrate diet (HCD, 43% carbohydrate), and HCB (HCD supplemented with 50 mg/kg berberine (BBR)). After 10 weeks' feeding trial, the results showed that higher levels of plasma glucose, triglyceride, and total cholesterol were observed in HCD-fed fish than in NCD-fed fish, while HCB feeding significantly ameliorated this effect. Moreover, HCB feeding remarkably reversed HCD-induced hepatic glycogen and lipid contents. In insulin signaling, BBR inclusion restored HCD-induced suppression of insulin receptor substrate mRNA expression and elevation of forkhead transcription factor 1 mRNA expression. In glucose metabolism, upregulated glucose transporter 2 and glycogen synthase mRNA expressions in the HCD group were observed compared to the NCD group. However, BBR adding reduced the mRNA expressions of glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase and increased the transcriptional levels of glucose transporter 2 and pyruvate kinase. In lipid metabolism, BBR supplementation could reverse downregulated hepatic carnitine palmitoyl transferase I mRNA expression and upregulated hepatic acetyl-CoA carboxylase and fatty acid synthetase mRNA expressions in the HCD group. Taken together, it demonstrates that BBR could improve glucose metabolism of this species via enhancing liver's glycolysis and insulin signaling, while inhibiting liver's glycogen synthesis and gluconeogenesis. It also indicates that BBR could reduce the metabolic burden of the liver by inhibiting fat synthesis and promoting lipid decomposition, and then enhance fat uptake in peripheral tissues.


Asunto(s)
Berberina/farmacología , Carbohidratos de la Dieta/administración & dosificación , Enfermedades de los Peces/inducido químicamente , Peces , Glucosa/metabolismo , Alimentación Animal , Animales , Compuestos Azo , Berberina/administración & dosificación , Dieta , Suplementos Dietéticos , Enfermedades de los Peces/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno , Metabolismo de los Lípidos , Lípidos/química , Hígado/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA